
POLITECNICO DI MILANO

Scuola di Ingegneria dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Generalized Nash Equilibria
for the Service Provisioning Problem

in Multi-Cloud Systems

Advisor: Prof. Danilo ARDAGNA
Co-Advisor: Prof. Mauro PASSACANTANDO

Master Thesis by:
Ettore TREVISIOL - 770628

Academic Year 2012/2013

This thesis is dedicated to my parents.
For their endless love, support and encouragement.

i

ii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Danilo
Ardagna, for his excellent guidance, caring, patience and providing me with
an excellent atmosphere for doing this thesis. My thanks go also to Prof.
Mauro Passacantando for his great help in mathematical issues while devel-
oping this work.

I wish to thank my university mates, in particular thanks go to Giorgio
Spadaro, Paolo Salvini and Riccardo Sacchi. I am also grateful to Davide
Molinari, Anna Savi and the other students of the Software Engineering
Laboratory for sharing their knowledge with me during the development of
this thesis.

Finally, a particular thank goes to Andrea Fresco and Pier Paolo Cedaro,
friends with whom I shared great moments of life.

Ettore

iii

Contents

1 Introduction 5

2 State of the art 9
2.1 Cloud Computing basic concepts 9
2.2 Cloud Computing definition 11

2.2.1 Characteristics . 13
2.2.2 Structure models . 14

2.3 Cloud Computing and run-time research challenges 23
2.3.1 Problem . 25
2.3.2 Solution . 25
2.3.3 Discipline . 26
2.3.4 State of the art . 27
2.3.5 Classification of the state of the art 33
2.3.6 Criteria for evaluation 38

3 A game theory service provisioning model 41
3.1 Problem statement and assumptions 41
3.2 Generalized Nash game model 44
3.3 Game analysis . 48

3.3.1 Dominant strategies for IaaSs 48
3.3.2 Game potential . 48
3.3.3 Analysis of constraints 49
3.3.4 Game model reformulation 52

3.4 A distributed algorithm for identifying Generalized Nash Equi-
libria . 53

4 Tools 59
4.1 AMPL . 59
4.2 CPLEX . 60

4.2.1 CPLEX algorithms for continuos optimization 60
4.3 SPECweb 2005 . 61

v

CONTENTS

4.4 JMeter . 63
4.5 SPECweb deployment in the Cloud 65

4.5.1 SPECweb tests . 65
4.5.2 JMeter extension . 67
4.5.3 SPECmeter . 69

4.6 Cloud analysis tool . 71
4.6.1 Cloud analysis tool class diagram 71
4.6.2 Cloud analysis tool sequence diagram 72

5 Experimental results 75
5.1 Design of experiments . 75

5.1.1 Parameters generation 75
5.1.2 SaaS to IaaS mapping 77
5.1.3 Traffic generation . 77

5.2 Scalability analysis . 80
5.3 Equilibria efficiency . 81

5.3.1 Social optimum problem 82
5.3.2 Price of Anarchy and Individual Worst Case 83

5.4 Alternative algorithms for resource allocation 83
5.4.1 Heuristic . 84
5.4.2 Resource rescaling algorithm 89

5.5 Algorithms efficiency comparison 90
5.6 Multiple IaaS analysis . 96

6 Conclusions 105

Appendices 109

A Game theory and generalized Nash equilibrium problem 109
A.1 Game theory in the Cloud Computing 109
A.2 Definition of Game . 110
A.3 Solution concepts: Nash Equilibrium and Generalized Nash

Equilibrium . 111
A.4 Equilibria existence and potential games 114
A.5 Wardrop equilibrium . 117

vi

List of Figures

2.1 Cloud Computing architecture, [106]. 15

2.2 Cloud service models. 18

2.3 Cloud deployment models. 22

2.4 Taxonomy for optimization approaches. 28

3.1 Cloud infrastructures. 42

3.2 System performance model. 43

3.3 Algorithm for finding Generalized Nash Equilibria. 55

4.1 SPECweb 2005 test diagram. 66

4.2 SPECweb banking test Markov chain. 67

4.3 Markov chain example in JMeter. 68

4.4 SPECmeter architecture. 69

4.5 SPECmeter test automation sequence diagram. 70

4.6 Cloud analysis tool class diagram. 72

4.7 Cloud analysis tool sequence diagram. 73

5.1 Queueing delay time. 76

5.2 Service time. 76

5.3 Daily time distribution of requests. 78

5.4 Weekly time distribution of requests. 79

5.5 Generated daily time distribution of requests. 79

5.6 Worldwide distribution of requests. 80

5.7 Distributed algorithm for identifying GNE scalability. 82

5.8 Impact of system capacity and service classes on the optimal
profit, [59]. 84

5.9 The difference of optimal profit with varied number of opened
service classes, [59]. 85

5.10 IaaS capacity usage on peak hours. 92

5.11 Traffic example of a single SaaS provider. 97

5.12 SaaS allocation with unlimited resources. 98

vii

LIST OF FIGURES

5.13 SaaS allocation with limited resources. 99
5.14 Multi-IaaS analysis results with φi = 0.1. 100
5.15 Multi-IaaS payoff function comparison with φi = 0.1. 101
5.16 Multi-IaaS analysis results with φi = 0.3. 102
5.17 Multi-IaaS payoff function comparison with φi = 0.3. 103
5.18 Multi-IaaS analysis results with φi = 0.5. 103
5.19 Multi-IaaS payoff function comparison with φi = 0.5. 104

A.1 Families of Generalized Nash Equilibrium Problems. 114

viii

List of Tables

2.1 Problem category: perspective. 33
2.2 Problem category: quality attributes. 34
2.3 Problem category: dimensionality. 34
2.4 Problem category: constraints. 35
2.5 Solution category: type. 35
2.6 Solution category: degrees of freedom. 36
2.7 Solution category: architecture representation. 36
2.8 Solution category: optimization strategy. 36
2.9 Solution category: constraints handling. 37
2.10 Solution category: time scale. 37
2.11 Discipline category: type. 37
2.12 Discipline category: quality model. 37

3.1 Parameters and decision variables. 47

5.1 Performance parameters and time unit costs. 77
5.2 Distributed algorithm for identifying GNE execution times. . . 81
5.3 Algorithms PoA comparison with φi = 0.1. 93
5.4 Algorithms IWC comparison with φi = 0.1. 93
5.5 Algorithms re-optimization comparison with φi = 0.1. 93
5.6 Algorithms PoA comparison with φi = 0.3. 94
5.7 Algorithms IWC comparison with φi = 0.3. 94
5.8 Algorithms re-optimization comparison with φi = 0.3. 94
5.9 Algorithms PoA comparison with φi = 0.5. 95
5.10 Algorithms IWC comparison with φi = 0.5. 95
5.11 Algorithms re-optimization comparison with φi = 0.5. 95
5.12 Multi-IaaS analysis results with φi = 0.1. 99
5.13 Multi-IaaS analysis results with φi = 0.3. 100
5.14 Multi-IaaS analysis results with φi = 0.5. 101

ix

LIST OF TABLES

x

Abstract

In recent years the evolution and the widespread adoption of virtualiza-
tion, service-oriented architectures, autonomic, and utility computing have
converged letting a new paradigm to emerge: Cloud Computing. Clouds
allow the on-demand delivering of software, hardware, and data as services.
Currently the Cloud offer is becoming day by day wider, since all the ma-
jor IT companies and Service providers, like Microsoft, Google, Amazon,
HP, IBM, and VMware have started providing solutions involving this new
technological paradigm.

As Cloud-based services are more numerous and dynamic, the develop-
ment of efficient service provisioning policies becomes increasingly challeng-
ing. In this thesis we take the perspective of Software as a Service (SaaS)
providers which host their applications at multiple Infrastructure as a Ser-
vice (IaaS) providers. Each SaaS needs to comply with quality of service
requirements, specified in Service Level Agreement (SLA) contracts with the
end-users, which determine the revenues and penalties on the basis of the
achieved performance level. Each SaaS provider wants to minimize the cost
of use of Cloud resources and penalties for requests execution failures. More-
over, SaaS providers compete and bid for the use of infrastructural resources.
On the other hand, the IaaSs want to maximize their revenues obtained pro-
viding virtualized resources.

In this thesis we model the service provisioning problem as a generalized
Nash game. In particular, we develop an efficient distributed algorithm for
the run-time allocation of IaaSs resources among competing SaaS providers.
We demonstrate the effectiveness of our approach by performing tests con-
sidering realistic Cloud scenarios. Numerical results show that our algorithm
is scalable and can be used at run-time since it can solve problem instances
of maximum size in less than one minute. Compared to other state-of-the-art
solutions our model can improve the efficiency of Cloud system evaluated in
term of Price of Anarchy up to 100%. Furthermore our analyses point out
the SaaS benefits while exploiting multiple IaaS deployment of applications
and redistribution of application workloads.

1

Sommario

Negli ultimi anni l’evoluzione e la diffusa adozione di virtualizzazione, ar-
chitetture orientate ai servizi, autonomic e utility computing sono confluiti in
un nuovo paradigma: il Cloud Computing. Il Cloud Computing ha come obi-
ettivo la fornitura on-demand di software e hardware come risorse accessibili
tramite Internet.

Con l’aumento della quantità e della dinamicità dei servizi basati sul
Cloud, lo sviluppo di politiche efficienti per la distribuzione delle risorse è
diventato sempre più complesso. In questo lavoro di tesi abbiamo studiato
il problema dal punto di vista dei fornitori Sofware as a Service (SaaS) che
ospitano le loro applicazioni presso molteplici fornitori Infrastructure as a
Service (IaaS). Ogni SaaS deve rispettare la qualità del servizio, specificata
nei contratti di Service Level Agreement (SLA) con i propri clienti, che de-
termina i ricavi e le penalità sulla base del livello di prestazioni raggiunto.
Ogni SaaS vuole minimizzare i costi di utilizzo delle risorse Cloud e delle
sanzioni causate dalla violazione dei contratti di SLA. Inoltre, i fornitori
SaaS competono fra loro facendo offerte per l’utilizzo delle infrastrutture. Al
contrario, gli IaaS vogliono massimizzare i propri introiti ottenuti fornendo
risorse virtualizzate.

In questa tesi abbiamo modellato il problema per la fornitura delle risorse
come un gioco di Nash generalizzato. In particolare, abbiamo sviluppato
un algoritmo distribuito per la gestione a run-time delle risorse degli IaaS
fra i SaaS in competizione. Abbiamo dimostrato l’efficacia del nostro ap-
proccio compiendo test rappresentativi di scenari di carico reale. I risultati
numerici mostrano che l’algoritmo è scalabile e può essere utilizzato a run-
time, poiché può risolvere istanze del problema di dimensione massima in
meno di un minuto. Rispetto ad altre soluzioni della lettaratura il nostro
modello può migliorare l’efficienza in termini di Price of Anarchy del sistema
Cloud valutato fino al 100%. Inoltre, le nostre analisi evidenziano i benefici
che i SaaS possono ottenere sfruttando il dislocamento delle applicazioni e la
distribuzione del traffico su molteplici IaaS.

3

Chapter 1

Introduction

Cloud Computing has been a dominant IT news topic over the past few
years. It is essentially a way for IT companies to deliver software/hardware
on-demand as services through the Internet. Cloud Computing applications
are generally priced on a subscription model, so end-users may pay a yearly
usage fee, for example, rather than the more familiar model of purchasing
software licenses. The Cloud-based services are not only restricted to software
applications (Software as a Service – SaaS), but could also be the platform for
the deployment and execution of applications developed in house (Platform
as a Service – PaaS) and the hardware infrastructure (Infrastructure as a
Service – IaaS).

In the SaaS paradigm, applications are available over the Web and provide
Quality of Service (QoS) guarantees to end-users. The SaaS provider hosts
both the application and the data, hence the end-user is able to use and access
the service from all over the world. With PaaS, applications are developed
and deployed on platforms transparently managed by the Cloud provider.
The platform typically includes databases, middleware, and also develop-
ment tools. In IaaS systems, virtual computer environments are provided as
services and servers, storage, and network equipment can be outsourced by
customers without the expertise to operate them.

Many companies, e.g., Google, Amazon, and Microsoft are offering Cloud
Computing services such as Google’s App Engine and Amazon’s Elastic
Compute Cloud (EC2) or Microsoft Windows Azure. Large data centers
provide the infrastructure behind the Cloud and virtualization technology
makes Cloud Computing resources more efficient and cost-effective both for
providers and customers. Indeed, end-users obtain the benefits of the infras-
tructure without the need to implement and administer it directly adding
or removing capacity almost instantaneously on a “pay-as-you-use” basis.
Cloud providers can, on the other hand, maximize the utilization of their

5

physical resources also obtaining economies of scale.
The development of efficient service provisioning policies is among the

major issues in Cloud research. Indeed, modern Clouds operate in a new and
dynamic world, characterized by continuous changes in the environment and
in the system and performance requirements must be satisfied. Continuous
changes occurs without warning and in an unpredictable manner, and are
outside the control of the Cloud provider. Therefore, advanced solution need
to be developed to manage the Cloud system in a dynamically adaptive way,
while continuously providing service and performance guarantees.

The recent evolution of Cloud system and the rapid growth of the Inter-
net have led to a remarkable usage of game-theoretic tools. Problems arising
in the ICT industry, such as resource or quality of service allocation prob-
lem, pricing, and load shedding, can not always be handled with classical
optimization approaches because each player can be affected by the action of
all players, not only by his own actions. In this context, game theory models
and approaches allow to gain an in-depth analytical understanding of the
service provisioning problem.

Game Theory has been successfully applied to diverse problems such as
Internet pricing, flow and congestion control, routing, and networking. One
of the most widely used “solution concept” in Game Theory is the Nash
Equilibrium approach [71]: a set of strategies for the players constitute a Nash
Equilibrium if no player can benefit by changing his/her strategy unilaterally
or, in other words, every player is playing a best response to the strategy
choices of his/her opponents.

In this thesis we take the perspective of SaaS providers which host their
applications at multiple IaaS providers, thanks to a software layer developed
within the MODAClouds project [68] [13]. Each SaaS provider wants to
minimize the cost of use of Cloud resources and incurs in penalties in case of
requests execution failures. The cost minimization is challenging since online
services receive dynamic workloads that fluctuate during the day. Resources
have to be allocated flexibly at run-time according to workload fluctuations.
Furthermore, each SaaS behaves selfishly and competes with others SaaS for
the use of infrastructural resources supplied by the IaaS. Each IaaS, in his
turn, wants to maximize the revenues obtained providing the resources.

To capture the behavior of SaaSs and IaaSs in this conflicting situation in
which the best choice for one depends on the choices of the others, we recur
to the Generalized Nash Equilibrium (GNE) concept, which is an extension
of the classical Nash equilibrium.

Therefore, the run-time service provisioning problem will be modeled as
a Generalized Nash Equilibrium Problem (GNEP). We then use Noncooper-
ative Game Theory results to develop an efficient algorithm for the run-time

6

CHAPTER 1. INTRODUCTION

management and allocation of IaaSs resources to competing SaaSs suitable
also for a fully distributed implementation. Multiple solutions achieving gen-
eralized equilibria will be proposed and evaluated in terms of their efficiency
with respect to the social optimum of the Cloud. We will demonstrate the
effectiveness of our approach by simulation and performing tests on a real
prototype environment.

The remainder of the thesis is organized as follows:

• In Chapter 2 we present a general overview on Cloud Computing pro-
viding definitions, illustrating the main characteristics and showing the
different structures models available. Afterwards, we will explain the
state of the art concepts and techniques relative to our work. An anal-
ysis and a classification of the literature approaches is given in terms
of type of problem, solution found and discipline adopted, according to
the approach used: pure optimization or game theory.

• In Chapter 3 the game-theoretic service provisioning problem will be
faced. We will start introducing the problem statements and design
assumptions. Then an analysis of the game and its properties will
be performed. Finally, we will present an algorithm able to find an
equilibrium for the resource allocation problem.

• In Chapter 4 we will describe the tools used in this thesis work. A
description of the optimization modelers and solvers we adopted will
be provided. Furthermore, we will describe the workload injector we
have developed to estimate the performance parameters of Cloud ap-
plications.

• Chapter 5 will be dedicated to assess the quality of our solution through
analyses and experiments. After a description of experiments settings,
algorithm scalability and comparison with other two approaches will be
performed. Finally, we will analyze the benefits that can be achieved
by SaaS when hosting applications on multiple IaaSs.

• In Chapter 6 conclusions will be drawn, underling the achieved results
and presenting future research directions.

7

8

Chapter 2

State of the art

This chapter presents a general overview on Cloud Computing and ex-
plains the state of the art concepts and techniques relative to our work.

After a short introduction on basic notions and advantageous features in
Section 2.1, we provide and analyze a definition of Cloud, illustrate the main
characteristics and show different structures models in Section 2.2.

In Section 2.3, today’s run-time research challenges are presented. A
classification of the literature approaches is given in terms of type of problem,
solution found and discipline adopted. The papers analyzed in the state of the
art are divided according to the approach used: pure optimization or game
theory one. This will allow to concentrate and understand the methodology
used in this work. Moreover some criteria of evaluation are summarized in
final tables.

2.1 Cloud Computing basic concepts

In a world characterized by progress, fast changes and advances, demand
for computing power has been increasing over the last half century. Handling
workloads of great diversity and enormous scale is necessary in all the most
significant fields of today’s society, due to the penetration of Information and
Communications Technology (ICT) in our daily interactions with the world
both at personal and community levels, encompassing business, commerce,
education, manufacturing and communication services. With the rapid de-
velopment of processing and storage technologies, and with the success of the
Internet, computing resources have become cheaper, more powerful and more
universally available than ever before. In such a setting, dynamic systems
are required to provide services and applications that are more competitive,
more scalable and more responsive with respect to the classical systems. This

9

2.1. CLOUD COMPUTING BASIC CONCEPTS

technological trend has enabled the realization of a new computing paradigm
called Cloud Computing, in which resources (e.g., CPU, and storage) are pro-
vided as general utilities that can be leased and released by users through
the Internet in an on-demand fashion.

In a Cloud Computing environment, the traditional role of service provider
is divided into two: the infrastructure providers who manage Cloud platforms
and lease resources according to a usage-based pricing model, and service-
providers, who rent resources from one or many infrastructure providers to
serve the end users. The emergence of Cloud Computing has made a tremen-
dous impact on the Information Technology (IT) industry over the past few
years, where large companies such as Google [40], Amazon [10] and Microsoft
[64] strive to provide more powerful, reliable and cost-efficient Cloud plat-
forms, and business enterprises seek to reshape their business models to gain
benefit from this new paradigm. Indeed, Cloud Computing provides several
compelling features that make it attractive to business owners.

The new mechanism is increasingly adopted in many areas, such as e-
commerce, retail industry and academy for its various advantages:

• No up-front investments: Cloud Computing uses a pay-as-you-go pric-
ing model. A service provider does not need to invest in the infras-
tructure to start gaining benefit from Cloud Computing. It simply
rents resources from the Cloud according to its own needs and pays
for the usage. As a consequence, cloud model is cost-effective because
customers pay for their actual usage without up-front costs.

• Lowering operating costs: resources in a Cloud environment can be
rapidly allocated and deallocated on demand. Hence, a service provider
no longer needs to provision capacities according to the peak load.
This ensures huge savings since resources can be released to save on
operating costs when service demand is low. In this way, costs are
claimed to be reduced and in a public Cloud delivery model capital
expenditure is converted to operational expenditure.

• High scalability and elasticity : infrastructure providers pool large a-
mount of resources from data centers and make them easily accessible.
Scalability is possible via dynamic (“on-demand”) provisioning of re-
sources on a fine-grained, self-service basis near real-time, without users
having to engineer for peak loads (surge computing). Indeed, a service
provider can easily expand its service to large scales in order to handle
rapid increase in service demands (e.g., flash-crowd effect).

• Easy access: services hosted in the Cloud are generally web-based.
Therefore, they are easily accessible through a variety of devices with

10

CHAPTER 2. STATE OF THE ART

Internet connections. These devices not only include desktop and lap-
top computers, but also cell phones and smart devices. Agility improves
with users’ ability to re-provision technological infrastructure resources.

• Reducing business risks and maintenance expenses: by outsourcing the
service infrastructure to the Clouds, a service provider shifts its business
risks (such as hardware failures) to infrastructure providers, who often
have better expertise than many customers and are better equipped
for managing these risks. In this way Cloud Computing guarantees
business continuity and disaster recovery. In addition, maintenance of
Cloud Computing applications is easier, because they do not need to
be installed on each user’s computer and can be accessed from different
places. Consequently, a service can cut down the hardware maintenance
and the staff costs.

However, despite the considerable development and spread of Cloud Com-
puting, it also brings many challenges and new problems in terms of quality
of service (QoS), Service Level Agreements (SLA), security, compatibility,
interoperability, costs and performance estimation and so on. These issues
have been analyzed and studied in the last few years but still a lot of inves-
tigation needs to be carefully addressed.

Before presenting the state of the art and discussing the main research
challenges, in the next sections we explain what Cloud Computing is, high-
lighting its key concepts and architectural principles.

2.2 Cloud Computing definition

The origin of the term “Cloud Computing” is obscure as it has never
been defined in a unique way and precise circumstance. It appears to derive
from the practice of drawing stylized Clouds to denote networks in diagrams
of computing and communications systems since the half of the XX century.
The word “Cloud” is used as a metaphor for the Internet, based on the
standardized use of a Cloud-like shape to denote a network on telephony
schematics and later to depict the Internet in computer network diagrams as
an abstraction of the underlying infrastructure it represents.

The main idea behind Cloud Computing is not a new one, unlike other
technical terms; it is not a new technology, but rather a new operations
model that brings together a set of existing technologies to run business in
a different way. Indeed, most of the elements used by Cloud Computing,
such as virtualization and utility-based pricing, are not new. Instead, Cloud

11

2.2. CLOUD COMPUTING DEFINITION

Computing leverages these existing technologies to meet the technological
and economic requirements of today’s demand for information technology.

If we consider that with the first available large-scale mainframe in aca-
demia and corporations, accessible via thin clients / terminal computers,
it became important to find ways to get the greatest return on the invest-
ment in them, allowing multiple users to share both the physical access to
the computer from multiple terminals as well as to share the CPU time,
and eliminating periods of inactivity (time-sharing), we can affirm that the
underlying concept of Cloud Computing dates back to the 1950s.

In 1961, John McCarthy was the first to suggest publicly that computer
time-sharing technology might result in a future in which computing power
and even specific applications could be provided and sold through the public
utility business model (like water or electricity). This idea was very popu-
lar during the late 1960s, but faded by the mid-1970s, since hardware and
telecommunications were not sophisticated and prepared enough for this pro-
gressive scheme.

The term “Cloud” has also been used in various contexts such as de-
scribing large ATM (Asynchronous Transfer Mode) networks in the 1990s.
Telecommunications companies began to offer VPN (Virtual Private Net-
work) services instead of dedicated point-to-point data circuits, with com-
parable quality of service but at a much lower cost. The Cloud symbol was
used to represent the demarcation line between provider’s and user’s respon-
sibility. This boundary was soon extended to cover servers as well as the
network infrastructure.

However, since 2000, the idea has resurfaced in new forms. It was after
Google’s CEO Eric Schmidt used the word to describe the business model
of providing services across the Internet in 2006, that the expression really
started to gain popularity. Since then, the term Cloud Computing has been
used mainly as a marketing term in a variety of contexts to represent many
different ideas. The ubiquitous availability of high-capacity networks, low-
cost computers and storage devices as well as the widespread adoption of
hardware virtualization, service-oriented architecture, autonomic, and utility
computing had led to a tremendous growth in Cloud Computing in various
fields of application. This is the reason why Cloud Computing term does
not have a standard definition. The lack of general and uniform concept
generated not only market hypes, but also a fair amount of skepticism and
confusion. For this reason, recently there has been work on standardizing the
definition of Cloud Computing. As an example, in [90] the author compared
over 20 different definitions from a variety of sources to confirm the following
standard definition:

12

CHAPTER 2. STATE OF THE ART

Clouds are a large pool of easily usable and accessible virtual-
ized resources (such as hardware, development platforms and/or
services). These resources can be dynamically reconfigured to ad-
just to a variable load (scale), allowing also for an optimum re-
source utilization. This pool of resources is typically exploited by
a pay-per-use model in which guarantees are offered by the Infras-
tructure Provider by means of customized SLAs.

Despite the validity of the above definition, in this work we choose to
adopt the definition of Cloud Computing provided by the National Institute
of Standards and Technologies (NIST) [62], as we think it covers all the
essential aspects of Cloud Computing:

Cloud Computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.

2.2.1 Characteristics

The above definition highlights the basic properties of Cloud Computing:

• Ubiquity: the user can totally ignore the location of the hardware in-
frastructure hosting the required service and make use of the service
everywhere and every time he needs through his client application.

• Convenience: the consumer can use a service exploiting remote physi-
cal resources, without necessarily buying/acquiring them. As he is just
charged for the resources provided according to a pay-per-use mecha-
nism, utility-based pricing lowers service operating cost.

• On-demand activation: a service consumes resources only when it is
explicitly activated by the user, otherwise it is considered inactive and
the resources needed for its execution can be used for other purposes.

Moreover, the NIST definition also specifies five essential characteristics
of Cloud Computing, as stated in [21]:

• On-demand self-service: resources can be allocated or “allocated on-
demand”, without requiring human interaction with the service’s pro-
viders. The automated self-organized resource management feature
yields high agility that enables service providers to respond quickly to
rapid changes in service demand such as the flash crowd effect.

13

2.2. CLOUD COMPUTING DEFINITION

• Broad network access: capabilities are available over the Internet and
are accessed through mechanisms that promote use by simple (thin) or
complex (thick) client platforms (e.g., any device with Internet connec-
tivity such as mobile phones, laptops, and smart devices). Moreover,
to achieve high network performance and localization, many of today’s
Clouds consist of data center distributed in many locations around the
globe. A service provider can easily leverage geo-diversity to achieve
maximum service utility.

• Resource pooling: different physical and virtual resources are dynami-
cally assigned and reassigned according to consumer demand and needs;
they are pooled by providers to serve multiple resource users and us-
ing a multi-tenant model. The customer’s control is independent from
the exact location of the provided resources but may know a location
at a higher level of abstraction (e.g., country, state, or data-center).
Such dynamic resource assignment capability provides much flexibility
to infrastructure providers for managing their own resource usage and
operating costs. Examples of resources include storage, CPUs, memory,
network bandwidth, and virtual machines.

• Rapid elasticity: resources can be rapidly and elastically provisioned,
in some cases automatically, to quickly scale out and rapidly released
to quickly scale in; the consumer often perceives unlimited availability
of resources that can be purchased in any quantity at any time. Com-
pared to the traditional model that provisions resources according to
peak demand, dynamic resource provisioning allows service providers to
acquire resources based on the current demand, which can considerably
lower the operating cost.

• Measured service: resources usage is always automatically controlled
and optimized by leveraging a metering capability at a level of abstrac-
tion appropriate to the type of service (e.g., storage, bandwidth, CPU
activity time for processing services and so on). This monitoring mech-
anism provides transparency for both the provider and consumer of the
utilized service.

2.2.2 Structure models

This section aims to give a global description of the architectural, business
and various operation models of Cloud Computing.

14

CHAPTER 2. STATE OF THE ART

A layered architecture

In a Cloud environment, services owned by multiple providers are co-
located in a single data center. The performance and management issues
of these services are shared among service providers and the infrastructure
provider. The layered architecture of Cloud Computing provides a natural
division of responsibilities: the owner of each layer only needs to focus on
the specific objectives associated with that layer. However, multi-tenancy
also introduces difficulties in understanding and managing the interactions
among various stakeholders.

End Users

Software as a

Service (SaaS)

Platform as a

Service (PaaS)

Infrasctructure

as a Service (IaaS)

Resources Managed at Each layer

Application

Platforms

Infrastructure

Hardware

Examples:

Google Apps,

Facebook, Youtube,

Saleforce.com

Microsoft Azure,

Google AppEngine,

Amazon SimpleDB/S3

Amazon EC2,

GoGrid,

Flexiscale

Date Centers

Businness Applications,

Web Services, Multimedia

Software Framework (Java/Python/.Net)

Storage (DB/File)

Computation (VM) Storage (block)

CPU, Memory, Disk, Bandwidth

Figure 2.1: Cloud Computing architecture, [106].

Generally speaking, we can identify four layers that compose the architec-
ture of a Cloud Computing environment: the hardware/data center layer, the
infrastructure layer, the platform layer and the application layer, as shown in
Figure 2.1. This classification allows to understand what each of the layers
is composed of, what the intended function of that layer is, and how these
layers interact with each other. By simplifying the Cloud Computing con-
cept into layers, it is easier to define the roles within the overall structure
and explain where the business fits into the model. A detailed description of
each layer follows:

1. The hardware layer : this layer is responsible for managing the physi-
cal resources of the Cloud, including physical servers, routers, switches,

15

2.2. CLOUD COMPUTING DEFINITION

power suppliers, and cooling systems. In practice, the hardware layer is
typically implemented in data centers. A data center usually contains
thousands of servers that are organized in racks and interconnected
through switches, routers or other fabrics. Typical issues at hardware
layer include hardware configuration, fault-tolerance, traffic manage-
ment, power and cooling resource management. Note that the physical
hardware is being sliced into virtual machines (VMs), each having their
own small (usually Linux or UNIX based) operating system installed.

2. The infrastructure layer : also known as the virtualization layer, the
infrastructure layer creates pools of storage and computing resources
by partitioning the physical resources using virtualization technologies
such as Xen [100], KVM [54] and VMware [92]. These pools of resources
are the key to providing elasticity, scalability and flexibility with respect
to server architecture. Indeed, virtual machines can be brought online
and assigned to a resource pool on-the-fly when the demand on that
pool increases, while they can then be destroyed when no longer needed.
The ability to provision and delete virtual machines on the fly allows a
vendor to provide Infrastructure as a Service (IaaS). As a consequence,
instead of purchasing servers or even hosted services, IaaS customers
can create and remove virtual machines and network them together
at will. Thanks to virtualization technologies, the infrastructure layer
offers VMs as a service to end users that have complete control of their
environments.

3. The platform layer : built on top of the infrastructure layer, the plat-
form layer consists of operating systems and application frameworks,
and abstracts the IaaS layer by removing the individual management
of virtual machine instances. The purpose of this layer is to minimize
the burden of deploying applications directly into VM containers. In
fact, at this layer customers do not manage their virtual machines, they
merely create their own programs and applications, which are hosted
by the platform services they are paying for, within an existing API or
programming language. This frees the developers from concerns about
environment configuration and infrastructure scaling, but offers limited
control.

4. The application layer : at the highest level of the hierarchy, the applica-
tion layer consists of the actual Cloud applications that offer web-based
software as a service (SaaS), such as email or CRM (Customer Rela-
tionship Management). In this layer, users are truly restricted to only

16

CHAPTER 2. STATE OF THE ART

what the application is and can do, they get only pre-defined function-
ality and they cannot go much further than that. Indeed, applications
are designed for ease of use and GTD (getting things done). Billing
can be based on utility or a flat monthly fee. Either way, it is a simple
way to get the application functionality you need without incurring the
cost of developing that application. Different from traditional applica-
tions, Cloud applications can leverage the automatic-scaling feature to
achieve better performance, availability and lower operating cost.

We note that the architecture of Cloud Computing is modular, much more
than traditional service hosting environments. Each layer is loosely coupled
with the layer above and below, allowing each layer to evolve separately. The
architectural modularity allows Cloud Computing to support a wide range of
application requirements while reducing management and maintenance over-
head.

Cloud service models

Cloud Computing adopts a service-driven operating business model, indi-
cating a strong emphasis on service management. In other words, hardware
and platform-level resources are provided as services on an on-demand-basis,
according to the SLAs negotiated with its customers. Conceptually, every
layer of the architecture described in the previous section can be implemented
as a service to the layer above. Conversely, every layer can be perceived
as a customer of the layer below. However, in practice, Cloud Computing
providers offer services that can be grouped into three fundamental cate-
gories: infrastructure as a service (IaaS), platform as a service (PaaS) and
software as a service (SaaS), as in Figure 2.2.

• Infrastructure as a Service: IaaS refers to on-demand provisioning com-
puters, storage and other infrastructural physical resources, usually in
terms of VMs. The Cloud owner who offers IaaS is called an IaaS
provider. The consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. In this model,
the consumer does not manage or control the underlying Cloud infras-
tructure but he is responsible for patching and maintaining the operat-
ing systems, deployed application software, storage, and he possibly has
limited control of select networking components (e.g., host firewalls).
Cloud providers typically bill IaaS services on a utility computing basis,
that is, cost reflects the amount of resources allocated and consumed.

17

2.2. CLOUD COMPUTING DEFINITION

Figure 2.2: Cloud service models.

Examples of IaaS providers include Amazon EC2 [9], Windows Azure
Virtual Machines [67], Google Compute Engine [43], GoGrid [39], and
Flexiscale [38].

• Platform as a Service: PaaS refers to providing platform layer re-
sources, typically including operating system support, database, web
server and software development frameworks. These provided capa-
bilities are consumer-created or acquired applications, created using
programming languages and tools supported by the provider. The con-
sumer has control over the deployed applications and possibly applica-
tion hosting environment configurations but cannot manage the under-
lying Cloud infrastructure. Application developers can develop and run
their software solutions on a Cloud platform without the cost and com-
plexity of buying and managing the underlying hardware and software
layers. With some PaaS offers, the underlying computer and storage
resources scale automatically to match application demand such that
Cloud user does not have to allocate resources manually. Examples of
PaaS providers include Google App Engine [41], Microsoft Windows
Azure Compute [66], and Force.com [78].

• Software as a Service: SaaS refers to providing on-demand applications
over the Internet. Cloud providers install and operate application soft-
ware running on a Cloud infrastructure while Cloud users access these

18

CHAPTER 2. STATE OF THE ART

software from various client devices through a thin interface such as a
web browser (e.g., web-based email). The consumer does not manage
or control the underlying Cloud infrastructure and platform on which
the application is running, with the possible exception of limited user-
specific application configuration settings. This eliminates the need
to install and run the application on the Cloud user’s own computers
simplifying maintenance and support. The pricing model for SaaS ap-
plications is typically a monthly or yearly flat fee per user, so price
is scalable and adjustable if users are added or removed at any point.
Examples of SaaS providers include Salesforce.com [78], Rackspace [75]
and SAP Business ByDesign [79], Google Apps [42], Microsoft Office
365 [65], and Onlive [74].

We observe that PaaS and IaaS providers are often called the infrastruc-
ture providers of Cloud providers since, in the current practice, they are
often part of the same organization (e.g. Google and Salesforce). However,
according to the layered architecture of Cloud Computing, it is entirely pos-
sible that a PaaS provider runs its Cloud on top of an IaaS provider’s Cloud.

IaaS instance options

In addition to providing the flexibility to easily choose the number, the
size and the configuration of the compute instances the customers need for
their applications, an IaaS provides customers different purchasing models
that give them the flexibility to optimize their costs. For example Amazon
EC2, IaaS market leader and reference model of this work, offers three kind
of instances: (i) On-demand instances which allow the customer to pay a
fixed hourly rate with no commitment; (ii) reserved instances where the
customer pay a low, one-time fee and in turn receive a significant discount
on the hourly charge; (iii) on-spot instances which enable the customer to bid
whatever price he wants for individual instance, providing for even greater
savings if his application have flexible start and end times. An accurate
description of the three different EC2 instance options follows:

• On-demand instances : on-demand instances requires no long-term com-
mitments or upfront payments. Customers can increase or decrease
compute capacity depending on the demands of their own applications
and only pay the needed rate for the instances they use. An IaaS
always strives to have enough on-demand capacity available to meet
customers needs, but during periods of very high demand, it is pos-
sible that it might not be able to launch specific on-demand instance

19

2.2. CLOUD COMPUTING DEFINITION

types in specific availability zones (i.e., a specific Amazon data center)
for short periods of time. On-demand instances are recommended for
users that want the low cost and flexibility without any up-front pay-
ment or long-term commitment, or applications with short term, spiky,
or unpredictable workloads that cannot be interrupted.

• Reserved instances : functionally, reserved and on-demand instances
perform identically but those reserved let the customer make a low,
one-time, upfront payment for an instance, reserve it for a one or three
year term, and pay a significantly lower hourly rate for that instance.
Customers are assured that their own reserved instance will always
be available for the operating system (e.g. Linux/UNIX or Windows)
and availability zone in which they purchased it. For applications that
have steady state needs, reserved instances can provide high savings
compared to using on-demand instances. Reserved instances are usu-
ally recommended for applications with predictable usage, applications
that require reserved capacity, including disaster recovery and users
able to make upfront payments to reduce their total computing costs
even further.

• On-spot instances : spot instances provide the ability for customers to
purchase compute capacity with no upfront commitment and at hourly
rates usually lower than the on-demand rate. Spot instances allow you
to specify the maximum hourly price that you are willing to pay to
run a particular instance type. IaaS sets a spot price for each instance
type in each availability zone, which is the price all customers will pay
to run a spot instance for that given period. The spot price fluctuates
based on supply and demand for instances, but customers will never
pay more than the maximum price they have specified. If the spot
price moves higher than a customer’s maximum price, the customer’s
instance will be shut down by the IaaS. Other than those differences,
spot instances perform exactly the same as on-demand or reserved in-
stances. For the majority of cases, spot instances are recommended
for applications that have flexible start and end times, applications
that are only feasible at very low compute prices and users with urgent
computing needs for large amounts of additional capacity. Due to the
nature of on-spot instances, competitions for their acquisition raise be-
tween customers. This mechanism can be modeled with game theory
approaches as presented in Section 3.2 of this thesis.

20

CHAPTER 2. STATE OF THE ART

Cloud deployment models

There are many issues to consider when moving an enterprise application
to the Cloud environment. For example, some service providers are mostly
interested in lowering operation cost, while others may prefer high reliability
and security. Accordingly, there are different types of Clouds, each with its
own benefits and drawbacks:

• Public Clouds : a Cloud in which service providers offer resources as
services available to the general public or a large industry group and
owned by a private organization selling Cloud services (like Amazon
AWS, Microsoft and Google); these services are free or offered on a
pay-per-use model. Public Clouds offer several key benefits to service
providers, including no initial capital investment on infrastructure and
shifting of risk to infrastructure providers. However, they lack fine-
grained control over data, network and security settings, which restricts
their effectiveness in many business scenarios.

• Private Clouds : also known as internal Clouds, private Clouds are de-
signed for exclusive use by a single organization. A private Cloud may
be hosted internally or externally and managed by the organization or
by a third-party represented by external providers. A private Cloud
offers the highest degree of control over performance, reliability and se-
curity. However, they are often criticized for being similar to traditional
proprietary server farms and do not provide benefits such as no up-front
capital costs. Moreover, undertaking a private Cloud project requires
a significant level and degree of engagement to virtualize the business
environment: every one of the steps in the project raises security issues
that must be addressed in order to avoid serious vulnerabilities.

• Community Clouds : the Cloud infrastructure is shared by several orga-
nizations and supports a specific community that has common concerns
(e.g., mission, security requirements, policy, and compliance considera-
tions). It may be managed by the organizations or by a third party and
may exist on premise or off premise. The costs are spread over fewer
users than a public Cloud (but more than a private Cloud), so only
some of the cost savings potential of Cloud Computing are realized.

• Hybrid Clouds : a hybrid Cloud is an alternative solution to address-
ing the limitations of both public and private Clouds. It is a combi-
nation of two or more Cloud models (public, private or community),
that remain unique entities but are bound together by standardized or

21

2.2. CLOUD COMPUTING DEFINITION

proprietary technology that enables data and application portability
(e.g., Cloud bursting for load-balancing between Clouds). In this way
companies and individuals are able to obtain degrees of fault tolerance
combined with locally immediate usability without dependency on in-
ternet connectivity. Hence, hybrid Cloud architecture is flexible and
scalable. Compared to public Clouds, they provide tighter control and
security over application data, while still facilitating on-demand ser-
vice expansion and contraction. On the down side, designing a hybrid
Cloud requires carefully determining the best split between public and
private Cloud components.

For most service providers, selecting the right Cloud model depends on
the business scenario. For example, computing-intensive scientific applica-
tions are best deployed on public Clouds for cost-effectiveness. Arguably,
certain types of Clouds will be more popular that others. In particular, it
was predicted that hybrid Clouds will be the dominating deployment model
(Figure 2.3) for most organizations.

Types of Cloud

The Cloud Provider

The Cloud Provider

SME

SME

SME

Enterprise

Connectivity
(Network Access)

Private Cloud

Private Cloud

Hybrid Cloud

Enterprise

Public Cloud

Figure 2.3: Cloud deployment models.

22

CHAPTER 2. STATE OF THE ART

It is fundamental to note that Cloud Computing is still an evolving
paradigm. Its definitions, structure, use cases, underlying technologies, is-
sues, risks, and benefits will be refined in a spirited debate by the public and
private sectors. The definitions, attributes, and characteristics given in the
previous discussion will evolve and change over time. Finally we remark that
the Cloud Computing industry represents a large ecosystem of many models,
vendors, and market niches. Our description attempts to encompass all of
the various Cloud approaches.

2.3 Cloud Computing and run-time research

challenges

Despite the significant benefits offered by Cloud Computing, the current
technologies are not advanced enough to realize its full potential. As dis-
cussed in the previous sections, Cloud Computing is attractive to business
owners as it eliminates the requirement for users to plan ahead for provision-
ing, and allows enterprises to start from the small and increase resources only
when there is a rise in service demand. However, despite the fact that IT in-
dustry started adopting Cloud Computing, the development of its technology
is currently at its infancy, with many issues still to be addressed. Research
on Cloud Computing is still at an early stage and, while some aspects of this
domain are starting receiving attention from the research communities, new
challenges keep emerging from industry applications.

A systematic literature review was already presented in the work of Aleti,
Buhnova, Grunske, Koziolek, and Meedeniya, [6]. Since the current state of
the art is fragmented over different research communities, multiple system
domains, and multiple quality attributes, they have analyzed the results of
many research papers on architecture optimization approaches and created a
taxonomy which is used to classify the existing research. Their survey aims
to provide a basic classification framework integrating the current research
results, help the research community in consolidating the existing efforts and
point out current trends, gaps, and directions deriving a research agenda for
future developments.

Although this cross analysis is very helpful to have a comprehensive
overview on the research challenges, we extend the proposed taxonomy ac-
cording to our objectives. Since we want to understand the different per-
spectives, point out the types of problem, analyze the solutions found and
examine the various disciplines adopted, we present a new and original clas-

23

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

sification based on these important categories.
The aim of this section is to provide a better understanding of run-time

challenges of Cloud Computing and identify important research directions in
this increasingly important area.

Many solutions have been proposed for the management of Cloud service
centers at run-time, each seeking to meet application requirements while
controlling the underlying infrastructure. Five main problem areas have been
considered in resource management policies: 1) application/VM placement,
2) admission control, 3) capacity allocation, 4) load balancing and 5) energy
consumption. While each area has often been addressed separately, it is
noteworthy that these problem solutions are closely related. For example, the
request volume determined for a given application at a given server depends
on the capacity allocated to that application on the server. The following
discussion aims to figure out how these problems are addressed and to classify
them according to theoretical or applied criteria, conforming to the related
research developed by the scientific community nowadays.

A first classification of the literature approaches might consider the actor
optimizing the use of resources: many proposals take the perspective of the
Cloud providers (e.g., IaaS/PaaS) whose goal is to determine the optimal
configuration of the underlying infrastructure in order to satisfy incoming
requests from the end-users while minimizing some cost metrics. In the
opposite perspective the actor involved in resource management optimization
is the Cloud end-user which performs cloud resource allocations according to
application needs minimizing the cost of use of Cloud resources. In our work
we consider the second methodology, in particular we focus on SaaS’s side
hosting its applications on multiple IaaS.

To provide a comprehensive overview of the current state of the art and
classify the research literature, we consider four main dimensions:

1. type of problem,

2. solution found,

3. discipline adopted.

In the next three subsections we will branch out and examine in detail
this classification. Thanks to this analysis we can accurately consider the
work done in this field in recent years and better understand the demanding
and interesting challenges in Cloud Computing.

24

CHAPTER 2. STATE OF THE ART

2.3.1 Problem

The first category we want to consider is related to the problem the
approaches aim to solve in the real world. Every approach tries to achieve a
certain optimization goal in a specific context. Most of the problems aim to
minimize costs, others want to ensure high performance or high availability
of the system, some others to simultaneously guarantee these goals. Since the
nature and the architecture of a system are concepts difficult to be defined,
it is useful to categorize some quantifiable quality attributes as performance,
cost, availability, reliability, safety, security or energy consumption.

Furthermore, the set of optimized quality attributes can be aggregated
into a single mathematical function or decoupled into conflicting objective:
the first one optimizes a single quality attribute only (single-objective op-
timization, SOO), while the second optimizes multiple quality attributes at
once (multi-objective optimization, MOO). Often, for a nontrivial multi-
objective optimization problem, there does not exist a single solution that
simultaneously optimizes each objective; in that case, the objective func-
tions are said to be conflicting, and there exists a (possibly infinite number
of) Pareto optimal solutions. Some approaches encode priority criteria fol-
lowing MOO into a single mathematical function (multi-objective weighted,
MOW), others can even use specifically designed functions.

Besides the dimensionality, each problem is characterized even by the
quality constraints that represents additional attributes or other system prop-
erties. Constraints include structural constraints and performance constraints
as arrival rate of applications or available memory bound, containment of
resource rental prices, energy costs of the infrastructure use limitation, re-
sponse time restraint, throughput threshold. In some cases constraints are
not present.

2.3.2 Solution

Problems at run-time can be secondly analyze on the solution category.
In this way we classify the approaches according to how they achieve the op-
timization goal and thus describe the main steps of the optimization process.
First, solutions type can be centralized or distributed according to the frame-
work and to the interplay between the system factors; alternatively there are
hierarchical solutions when the resources are managed according introducing
multiple decision points (e.g., clusters and server inside a cluster [25]).

Within each problem, which can be provider selection, application place-
ment, capacity allocation, load-balancing or admission control, it is impor-

25

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

tant to identify the degrees of freedom (DoF) exploited by proposed repre-
sentation of the system under study. Indeed, DoF indicate what changes
of the system are considered as variables in the optimization, showing what
resolution is best suited to the specific problem in a real environment.

Furthermore, approaches can be characterized according to the solution
methods. Firstly, architecture representation classifies the solutions based
on the information used to describe the problem structure and configuration:
according to the input required, there can be architectural model, UML
(Unified Modeling Language), ADL (Architecture Description Language) or
optimization models (linear or non-linear). Secondly, concerning with the
solution technique, two main categories of optimization strategies can be
pointed out: those using exact methods or those guaranteeing approximate
solutions. Among exact methods there can be standard methods, branch-
and-bound approaches which guarantee a lower bound of the solution or
problem-specific methods, while heuristic methods require problem or do-
main specific information to perform the search and meta-heuristic methods
that apply high-level strategies. The latter might exploit for example lo-
cal search, Evolutionary Algorithms such as Genetic Algorithms, Simulated
Annealing or bio-inspired as for example neural networks.

Another characteristic that differentiates the various searches and solu-
tion methods is constraint handling that describes the used strategies to
handle constraints. More precisely this category distinguishes if they are
treated as hard constraints or soft constraints with related penalties.

Finally, solutions are classified according to the time scale used which can
range from a daily or hourly scale up to the granularity of minutes, in some
cases even seconds.

2.3.3 Discipline

Lastly, the disciplines used to solve these problems at run-time advantage
of various disciplines which range from mathematics to computer science.
Between the most used we find control theory methods, machine learning
that is a branch of artificial intelligence and utility based method consisting
of combining performance models and optimization models.

Alternatively, some researchers exploit quantitative models for QoS char-
acteristics analysis such as state based models, Markov Chain and related
Markov Decision Processes, Queueing Networks or Logistic Queueing Net-
works, Stochastic Petri Nets, Process Algebra, and many more.

A main advantage of a control theoretic feedback loop is system stability
guarantees. Upon workload changes, these techniques can also accurately

26

CHAPTER 2. STATE OF THE ART

model transient behavior and adjust system configurations within a transi-
tory period, which can be fixed at design time. However, these techniques are
typically implemented by local controllers and, hence, only local optimiza-
tion objectives can be reached. Machine learning techniques are based on
live system learning sessions, without a need for analytical models of appli-
cations and the underlying infrastructure. An advantage of machine learning
techniques is that they accurately capture system behavior without any ex-
plicit performance or traffic model and with little built-in system-specific
knowledge. However, training sessions tend to extend over several hours,
retraining is required for evolving workloads, and existing techniques are of-
ten restricted to separately applying actuation mechanisms to a limited set
of managed applications. Utility-based approaches have been introduced to
optimize the degree of user satisfaction by expressing their goals in terms of
user-level performance metrics. Typically, the system is modeled by means
of a performance model embedded within an optimization framework. Op-
timization can provide global optimal solutions or sub-optimal solutions by
means of heuristics, depending on the complexity of the optimization model.

Analyzing the state of the art, section 2.3.4, we have divided the previous
researches exploiting optimization methods into pure approaches with a sin-
gle objective function, from game theory ones, with one objective function
per player. This distinction enables us to understand how other authors have
addressed their researches and make comparison with our work.

2.3.4 State of the art

As presented in the previous section, several approaches have been devel-
oped to manage the problems arisen in Cloud Computing. Since it is a new
interesting technology, rapidly growing and appealing for industries, there
is a multitude of studies in different research fields. Researchers have been
concentrating on specific problems, choosing different solution architectures
and strategies, using suitable techniques and evaluating the results according
to the purpose of the works. The next two sections present some of the most
significant works that have carried on in the last few years. As said before
pure optimization approaches are divided from works concerning game the-
ory methods.

27

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

Optimization

Approaches

Problem Solution Discipline

Quality

Attribute

Dimensionality

Constraint

Type

Degrees of

Freedom

Optimization

Strategy

Constraint

Handling

Timescale

Type

Quality ModelPerspective

Architecture

Representation

Figure 2.4: Taxonomy for optimization approaches.

Pure optimization approach

There are studies that focus the attention on the QoS, as [57] where the
authors use the branch-and-bound approach together with an adjusting re-
cursive procedure to evaluate and maximize the reliability of a computer
network in a Cloud Computing environment; the studied algorithm consid-
ers budget, time and stochastic capacity constraints. Other studies consider
green Cloud Computing, a field of research that concentrates on the sustain-
able use of energy. In [84] an energy-aware method to evaluate the trade-offs
between resource utilization and guaranteed consolidated workload perfor-
mance is presented, while [61] considers allocation policies and explains how
to ensure the user experience and related SLAs while minimizing energy con-
sumption. Note that both works consider heuristics methods.

Other studies deal with the problem of provisioning VMs in the Cloud

28

CHAPTER 2. STATE OF THE ART

with various approaches. In [55] a probabilistic approach aim to test admis-
sion control and to find the optimal allocation; the multi-objective weighted
function incorporates business rules in terms of trust, eco-efficiency and cost,
and it is associated to constraints representing real factors that compromise
the Cloud services, including the variable number of users in time and the dif-
ferent patterns of requests. Authors in [105] show the today’s limitations for
Cloud Computing providers in allocating their VMs with offline mechanisms
based on fixed-prices or auctions. Improvements have been demonstrated by
implementing a mechanism for online VM provisioning and allocation, called
MOVMPA, that aims to maximize the profit of each provider, and by com-
paring it with current methods. Scheduling techniques are analyzed in [49]
where low-priority tasks are opportunistically scheduled in parallel tasks onto
underutilized computation resources in the Cloud left by high-priority tasks.
A model that manages tasks as ON/OFF Markov chains is presented and
a demonstration shows that the optimal solution requires Markov Decision
Process solving, which has exponential complexity.

Besides functional and operational approaches, most of the work con-
centrates the attention on economic aspects such as minimization of costs
or, dually, profit maximization. Indeed, a lot of studies, like the one pre-
sented in this work, are focused on the conflict between the minimization
of costs due to the purchase of resources and SLAs compliance. The work
discussed in [103] addresses two challenges: the minimization of the total
amount of resources while meeting the end-to-end performance requirements
for the applications; using open, closed or semi-closed workloads as input
for an adaptive PI controller, an SLA-based control method leads to exact
solution of the minimization of the mean round trip time for N-tier web ap-
plications with resource partitioning schemes. The same problem, but under
a certain financial budget and time constraints, has been investigated in [88]
with the use of MapReduce processing. A minimum cost maximum flow
algorithm is proposed in [46] to optimally solve the dynamic resource alloca-
tion and placement problem, exploiting directed graph and an adaptation of
the Bin-Packing algorithm combined with a prediction mechanism. Alterna-
tively, in [44] a force-directed resource assignment (FRA) heuristic is used to
optimize the total expected profit for processing, memory requirement and
communications resources and it is compared with the capacity constraint
relaxation solution that represents an upper-bound. In [24] authors discuss
an opportunistic service replication policy that leverages the variability in
VM workload and perfomance, as well as the on-demand billing features in
the Cloud ensuring response time constraints and maintaining the target
system utilization. A cost-aware Cloud provisioning engine is proposed in
[81]. The so called Kingfisher system exploits both replication and migration

29

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

to dynamically provision capacity and reconfigure applications and it uses
an integer linear programming formulation to minimize costs and guarantee
throughput constraint. A model for applying revenue management to on-
demand IT services have been presented in [59]. The model uses a nonlinear
objective function and numerical results are provided to determine the opti-
mal price over different system capacity and multiple classes with different
SLAs.

Using Bellman equations and a dynamic bidding policy, in [104], an op-
timal strategy under a Markov spot price evaluation is found in order to
complete deadline jobs with no real-time availability constraints, like in sci-
entific computing. Model’s performance are evaluated by a comparison with
uniformly distributed spot prices and EC2 spot prices. Another work re-
garding on-spot bidding is treated in [83]. Authors propose a profit aware
dynamic bidding algorithm, which observes the current spot price and se-
lects bid adaptively to maximize the time average profit of the Cloud service
broker and minimize its costs in a spot instance market. In [99], to over-
come SaaS-IaaS interaction limitation, a cost-effective admission control and
scheduling algorithms for SaaS providers are proposed, in order to effectively
utilize public Cloud resources to maximize profits by minimizing costs and
penalty delays and improving customer satisfaction level.

Regarding autoscaling problem, various approaches have been studied.
[29] presents a model-driven engineering approach to optimizing the con-
figuration, energy consumption, and operating costs of Cloud auto-scaling
infrastructure to create greener computing environments that reduce emis-
sions resulting form superfluous idle resources. The paper also describes
how these models can be transformed into constraint satisfaction problems
for configuration and energy consumption optimization in order to create
optimal auto-scaling configurations. In [32] authors show SmartScale, an
automating scaling framework that uses a combination of vertical (adding
more resources to existing VM instances) and horizontal (adding more VM
instances) scaling; this method ensures that each application is scaled in or-
der to optimize both resource usage and the reconfiguration cost incurred
due to scaling itself. Finally, in [101], an implementation of a system that
provides automatic scaling for Internet application is described. Each appli-
cation is encapsulated in a single VM and the system scales up and down,
minimizing costs and energy consumption, maximizing the loads, deciding
application placement and load distribution thanks to a color set algorithm.

30

CHAPTER 2. STATE OF THE ART

Game Theory approach

The recent development of Cloud systems and the rapid growth of the
Internet have led to a remarkable increase of the research works in the Cloud
Computing field. Since Game Theory suits perfectly to the social, economic
and strategic structure of Cloud Computing, in the last few years there was
a significant improvement in the application of Game Theory tools to this
area of study.

Problems arising in the ICT industry, such as resource or quality of ser-
vice allocation problem, pricing and load shedding, can not be handled with
classical optimization approaches. Indeed, in a general complex system, the
interrelationships among different users or providers cannot be represented
with any tool of pure optimization methods [8]. Therefore, there is a lack of
methodologies that can be resolved by Game Theory approach.

In representing Cloud Computing mechanism, interaction across different
players is non-negligible: each player can be affected by the actions of all
players, not only by his own actions. Game Theory can reproduce perfectly
this aspect. In this setting, a natural modeling framework involves seeking
an equilibrium, or stable operating point for the system. More precisely,
each player seeks to optimize his own goal, which depends on the strategies
of the other players upon his own; note that this optimization is performed
simultaneously by different players. An equilibrium (in the sense of Nash)
is reached when no player can decrease his objective function by changing
unilaterally its strategy.

A survey of different modeling and solution concepts of networking games,
as well as a number of different applications in telecommunications and wire-
less networks, based on Game Theory, can be found in [73] [8].

As for the specific problems of Cloud Computing, various theories and
various methods have been used to represent, model and manage Cloud ser-
vices, both at design time and at run-time. Different types of equilibria and
game have been considered, according to the problem addressed.

In [37] authors present a methodical in-depth game theory study on price
competition, moving progressively from a monopoly market to a duopoly
market, and finally to an oligopoly Cloud market. They characterize the
nature of non-cooperative competition in a Cloud market with multiple com-
peting Cloud service providers, derive algorithms that represent the influence
of resource capacity and operating costs on the solution and they prove the
existence of a Nash equilibrium. On the dynamics of the market, a model of
competitive equilibrium in e-commerce to solve the problem of pricing and
outsourcing can be found in [30]; here the analysis of pricing choices and

31

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

decisions to outsource IT capability leads to a representation of the Inter-
net competition and extracts the maximum profit minimizing the costs. In
[31] a model of market share of providers with competition is given by some
form of “price war” resurfaces in the price-QoS-capacity game, when QoS-
capacity relations are determined by explicit queueing formula. Authors in
[52] manage the problem of, short or long term, deadlines with axiomatic
bargaining approaches. More precisely, they have shown that Nash Bargain-
ing Solution (NBS) ensures proportional fairness whereas Raiffa Bargaining
Solution (RBS) can handle real-time task arrivals and dynamics; an asym-
metric pricing scheme allows the Cloud service provider to choose different
parameters such as user’s deadlines and budget requirements for deriving op-
timal resource allocation. Studies of the maximization of the social welfare as
a long-term social utility are discussed in [63]. Considering relevant queueing
aspects in a centralized setting, under appropriate convexity assumptions on
the operating costs and individual utilities, they established existence and
uniqueness of the social optimum. Furthermore, other studies based on a
non-cooperative game theory, are presented in [94] where authors employ
bidding model to solve the resource allocation problem in virtualized servers
with multiple instances competing for resources reaching a unique equilib-
rium point. Similar discussions can be found in [97]: QoS constrained parallel
tasks resource allocation problem is considered. Two practical approximated
solutions are proposed, firstly for each single participant problem by linear
binary programming, secondly for the final optimal strategy by algorithms
that minimize efficiency losses.

The problem of provisioning and reinforcing Cloud Computing infrastruc-
tures from security point of view is described in [76] by a minimization of
the costs and with constraints that ensure capacity availability. Firstly, they
prove that a Nash equilibrium under different formulation is computable in
polynomial time, then they derive conditions for reinforcing the infrastruc-
ture, and show that higher robustness levels are achieved by limiting the
disclosure of information about the infrastructure. [5] considers two simple
pricing schemes for selling Cloud instances and studies the trade-off between
them. Exploiting Bayes Nash equilibrium they provide theoretical and simu-
lation based evidence suggesting that fixed prices generates a higher expected
revenue than the hybrid system.

Regarding VMs provisioning, the problem of live migration is examined in
[102], where the concept of “skewness” is introduced to measure the uneven-
ness in the multi-dimensional resource utilization of a server. By minimizing
skewness, imposing overload avoidance and green computing, an heuristic
is implemented so that it combines different types of workloads and it im-
proves the overall utilization of server resources. Dynamic service placement

32

CHAPTER 2. STATE OF THE ART

is discussed to determine the locations where service applications should be
placed so that the hosting cost is minimized while key performance require-
ments are assured. They further consider the case where multiple service
providers compete for resource in a dynamic manner and show that there is
a Nash equilibrium solution which is socially optimal.

Cooperative games have been analyzed in [48] and [47]. They propose
a game-theoretic solution that ensures mutual benefits so that the Cloud
providers are encouraged to form a horizontal dynamic federation platform.
Using price-based resource allocation they developed both centralized and
distributed algorithms in order to find optimal solutions for these games.

Finally, Generalized Nash games for service provisioning problem have
been formulated in [17] and [16] to take the perspective of SaaS providers
which host their applications at a IaaS provider. Each SaaS needs to comply
with QoS requirements and specified SLAs with the user and at the same
time maximize its own revenue while minimizing the cost of use of resource
supplied by the IaaS that, on the other end, wants to maximize the revenues
obtained providing virtualized resources.

2.3.5 Classification of the state of the art

In what follows, summary tables are presented for each of the elements of
the taxonomy (Figure 2.4), in order to classify all the works described above
according to the categorization presented at the begin of this section.

Firstly, Table 2.1, summarize the researches that take the perspective of
the Cloud provider, or of the Cloud end-user or both.

Perspective

Cloud provider [101] [32] [29] [57] [84] [61] [55] [105]
[102] [103] [52] [44] [24] [59] [99] [37] [63]
[94] [76] [5] [48] [47] [16] [17] [97]

Cloud end-user [88] [46] [81] [49] [31] [104] [83] [107] [16]
[17] [14] [15]

Table 2.1: Problem category: perspective.

Table 2.2 categorizes the various studies carried out on the basis of what
the problem center, if it focus on issues of performance or reliability, costs

33

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

or energy consumption. In particular, in Table 2.3 we summarize the di-
mensionality of the problems. If the researches face a single problem with a
mono objective function, or they deal with different decision criteria through
a multiple objectives function problem. In this case, the reader can see that
the methodologies presented in literature adopt SOO rather than MOO.

Quality Attributes

Performance [76] [44] [88] [24] [31] [99] [101] [104] [14] [15]

Cost [59] [104] [83] [63] [81] [46] [30] [47] [55] [37] [14] [15]

Availability [102] [105] [32] [46] [49] [97]

Reliability [57] [103]

Energy [84] [61] [29]

Table 2.2: Problem category: quality attributes.

Dimensionality

Single-objective optimization [76] [44] [88] [24] [37] [59] [104] [83] [63] [81]
[46] [97] [102] [105] [32] [49] [57] [103] [29] [84]
[14] [15]

Multi-objective optimization [31] [99] [101] [30] [47] [55] [61]

Table 2.3: Problem category: dimensionality.

As for the problem constraints Table 2.4 divided works in 5 sub-category.
Also in this case, the vast majority of the reviewed papers presents a specific
framework able to manage cost and performance constraints.

Furthermore, it is possible to classify the literature according to the kind
of solution proposed. Table 2.5 divides the type of solution, separating the
methods that allow to take decision through a central point or through a
distributed algorithm. The degrees of freedom sub-category is analyzed in

34

CHAPTER 2. STATE OF THE ART

Constraints

Cost [31] [88] [59] [30] [83] [37] [97] [55] [57]

Performance [99] [44] [88] [37] [46] [102] [49] [57] [29] [14]
[15]

Availability [31] [104] [81] [97] [105] [46]

Throughput [83] [81] [32]

Memory [44] [59] [47] [46] [103]

Table 2.4: Problem category: constraints.

Table 2.6. Again, many methodologies allow the user to define its own degrees
of freedom whereas the most popular built-in one is the capacity allocation.

Type

Centralized [31] [24] [59] [63] [47]

Distributed [76] [88] [30] [47] [97] [84] [14] [15]

Hierarchical [25]

Table 2.5: Solution category: type.

Architecture representation is exposed in Table 2.7, and since the most
of the works adopt optimization models, their strategy is classified in two
categories: exact or meta-heuristic (Table 2.8).

Therefore deeper classification is made in Tables 2.9 and 2.10, respectively
for constraints handling and time scale.

35

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

Degrees of freedom

Provider selection [31] [101] [32] [55] [103] [102]

Application placement [101] [81] [46] [55] [49] [84]

Capacity allocation [76] [99] [44] [88] [24] [59] [104]
[83] [63] [37] [47] [46] [102] [97]
[105] [57] [103] [29] [61] [84] [14]
[15]

Load balancing [101] [14] [15]

Admission control [55] [99]

Table 2.6: Solution category: degrees of freedom.

Architecture representation

Architecture model [101]

Optimization model [44] [88] [99] [37] [81] [59]
[63] [105] [103] [32] [55]
[29]

Table 2.7: Solution category: architecture representation.

Optimization strategy

Exact [31] [24] [59] [104] [83] [63] [37] [46] [97]
[46] [103] [29] [15]

Meta-heuristic [99] [44] [97] [102] [49] [57] [61] [84] [14]

Table 2.8: Solution category: optimization strategy.

Finally, the last couple of tables (2.11 and 2.12) regroup researches for
their discipline categorizing them for typology and quality model adopted.
As we can see the most of the works consider utility based approach, while
we did not consider any work adopting machine learning discipline since it
is not of interest for our run-time purpose.

36

CHAPTER 2. STATE OF THE ART

Constraints handling

Not presented [30]

Hard [37] [49] [14] [15]

Penalty [59]

Table 2.9: Solution category: constraints handling.

Time scale

Minute [99] [14] [15]

Hour [61] [14] [15]

Day [37]

Table 2.10: Solution category: time scale.

Type

Utility based [31] [44] [88] [30] [63] [37]
[99] [97] [102] [14] [15]

Control theory [104] [55] [46] [103]

Machine Learning

Table 2.11: Discipline category: type.

Quality Model

Markov chain [76] [104] [83]

Queueing network [31] [14] [15]

State based model [99]

Table 2.12: Discipline category: quality model.

37

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

2.3.6 Criteria for evaluation

In order to assess the quality of the solution methods proposed we can
add various evaluation criteria that go beyond the above classification. A
method is better than another in some respects, but worse in another way.
The trade-off must be evaluated in order to choose the most suitable solution
to the run-time problem under consideration.

The main dimensions measured can be the time required to find a solution,
or the maximum size of the problem instance that can be solved. These
measures depend on practical and physical limitations, specific application
under study, industry’s aim or research’s purpose as well on the chances,
tools and resources available.

Another important evaluation criterion is scalability as the ability of the
solution method to handle problems of growing size or its ability to en-
large the optimization scope (e.g., adding additional quality metrics or con-
straints). Last but not least is the quality evaluation of the underlying quality
evaluation model, that is the accuracy that can be achieved comparing the
QoS metrics evaluated through the model with the real figures measured in
the real system.

In what follows a brief analysis of the literature reviewed above according
to such criteria is reported. Notice that, although a case study is often
presented, information about the model’s accuracy or its scalability is hardly
provided.

In [84] the study reveals the energy performance trade-offs for consoli-
dations and show that optimal operating points exist. Four simulations are
compared, maintaining constant the number of applications but varying disk
and CPU utilization, showing that the energy used by the proposed heuris-
tic is about 5.4% more than optimal on an average at 20% tolerance. No
information about scalability is reported.

Cost effectiveness and scalability are considered as performance measures
for the games in [47]. They analyzed the behavior of each game based on
the VM resources supply at steady state. The resource allocation games
converged to a steady state after a limited number of iteration whereby no
player has a tendency to unilaterally changes its strategy. An evaluation of
the scalability of the games in terms of social welfare with different revenue
function is also given.

To evaluate the scalability of resource allocation algorithm proposed in
[16] the authors considered a very large set of randomly generated instances.
The number of SaaS providers has been varied between 10 and 100 while
the number of applications between 1000 and 10000. They showed that the
problem can be solved in the worst case in less than twenty minutes.

38

CHAPTER 2. STATE OF THE ART

In [32] the researches varied the number of servers in the emulated data
center and observed the performance demonstrating that the total cost for
their software increases linearly with the number of servers. They also mea-
sured that the running time of the algorithm is statistically independent from
the number of servers.

Large scale simulation demonstrate that the algorithm presented in [101]
is extremely scalable: the decision time remains under 4 seconds for a system
with 1000 servers and 10000 applications.

An evaluation of the scalability of the algorithm is also shown in [102] by
varying the number of VMs in the simulation between 200 and 1400. The
speed of increase is between linear and quadratic, and the decision time is
about 1.3 s for a synthetic workload and 0.2 s for a real trace.

A complete scalability study is reported in [46]. The deviation from
optimal is shown to be consistently small and tend to vanish as the number of
physical machines (PMs) get higher. This means that the algorithm proposed
is very close to the optimal for a large number of PMs for a large Cloud
provider with many data centers a sector where actually the Bin-Packing
algorithm encounters scalability problems and takes longer times to find the
optimal solution.

A comparison between algorithms is performed in [99]. When the number
of user requests varies from 1000 to 5000 without varying other factors such as
deadline and budget, for each algorithm the total profit and average response
time has increased.

Finally, in [17] they measured the inefficiency of the two presented al-
gorithms in terms of Price of Anarchy (PoA) and Individual Worst Case
(IWC). A very large number of randomly generated instances is considered,
the number of SaaS providers varies between 10 and 100, while the number
of applications between 100 and 1000, obtaining a PoA lower than 1.01 and
1.42 and a IWC lower than 1.12 and 1.62 with the first and second algorithm,
respectively. Furthermore the article focused on the scalability arguing that
the algorithms scale linearly with the cardinality of the set of SaaS.

39

2.3. CLOUD COMPUTING AND RUN-TIME RESEARCH
CHALLENGES

40

Chapter 3

A game theory service
provisioning model

In this chapter we will present a service provisioning model, aiming to
minimize SaaS costs and maximize IaaS providers revenues in a distributed
Cloud environment, while respecting performance and Service Level Agree-
ment (SLA). A multi-Cloud scenario is considered, we assume that SaaS
providers can allocate resources on multiple IaaS that have different service
centers around the globe.

In Section 3.1 we start introducing the problem under analysis and our
design assumptions. In Section 3.2 the problem is formulated as a General-
ized Nash game and its relative properties are detailed in Section 3.3. Finally,
in Section 3.4 we will present an algorithm able to find an equilibrium for
the resource allocation problem in a finite number of iterations.

3.1 Problem statement and assumptions

We consider SaaS providers using Cloud computing facilities according to
the IaaS paradigm to offer multiple transactional Web services (WSs), each
service representing a different application.

The hosted WSs can be heterogeneous with respect to resource demands,
workload intensities and QoS requirements. The set of IaaS will be indicated
as I, the set of WS application offered by the j-th SaaS provider is denoted
by Aj, S will indicate the set of SaaSs while Si is the set of SaaS providers
running at IaaS i ∈ I.

A SLA contract, associated with each WS application, is established be-
tween the SaaS provider and its end-users. The average response time E [Rk]
executing the WS application k has to be less or equal to the given threshold

41

3.1. PROBLEM STATEMENT AND ASSUMPTIONS

Local
workload
manager

Virtualized
Servers

IaaS Provider

Virtual(Machine(Monitor(

Hardware(

VM(VM(VM(

WS1(WS1(WS2(

VM(

WSk(…(…(

Local
workload
manager

Local CA manager

Local WS arrival rates

Virtualized Servers

Execution rate of local arrivals

r12 + d12 + s12

⇤k
⇤1,⇤2, . . . ,⇤k

x13, x23, . . . , xk3

x1i, x2i, . . . , xki

i = 1 i = 2

i = 3 i = 4

Figure 3.1: Cloud infrastructures.

Rk, i.e. Rk<Rk. If the SaaS provider rejects a request it have to pay a
penalty νk according to the SLA.

Multiple VMs can run in parallel to support the same application. In
that case, we suppose that the running VMs are homogeneous in terms of
RAM and CPU capacity and the workload is evenly shared among multiple
instances (see Figure 3.1), which is common for current Cloud solutions.

Applications are hosted in virtual machines (VMs) which are dynamically
instantiated by the IaaS providers up to a maximum of number equal Ni for
each IaaS i. We have imposed that each VM is equal to another, providing a
service rate µki for the application k running at the IaaS i, but this constraint
can be easily extended and relaxed. This model wants to implement the
possibility for the SaaS providers to sign contracts with one or more IaaS
that compete each other in the Cloud market, so we consider the run-time
provisioning of resources at the IaaS i. This approach is possible thanks
to a software layer developed by the MODAClouds project [68] [13] which
allows to migrate at run-time application execution among multiple Cloud
providers.

IaaS providers usually charge the use of their resources on an hourly
basis. Hence, the SaaS has to face the problem of determining every hour
the optimal number of VMs for each WS class in order to minimize costs and
penalties, performing resource allocation on the basis of a prediction of future
WS workloads. The SaaS needs also an estimate of the future performance
of each VM in order to determine application average response time. In

42

CHAPTER 3. A GAME THEORY SERVICE PROVISIONING MODEL

Figure 3.2: System performance model.

the following we model, as a first approximation, each WS class hosted in
a VM as an M/G/1 queue (see Figure 3.2) in tandem with a delay center.
We assume (as common among Web service containers) that requests are
served according to the processor sharing scheduling discipline. The delay
center allows to model network delays and/or protocol delays introduced in
establishing connections, etc. Performance parameters are also continuously
updated at run-time in order to capture transient behavior, VMs network and
I/O interference and performance time of the day variability of the Cloud
provider.

For the IaaS provider we consider a pricing model similar to Amazon
EC2. Given the assumption that the subscript ki means that the application
k is hosted at IaaS i, the IaaS provider offers: reserved rki VMs, for which
SaaS providers applies for a one-time payment (currently every one or three
years) for each instance they want to reserve and on spot ski, for which SaaS
providers bid and compete for unused IaaS capacity, or on demand dki VMs
that let the SaaS pay for compute capacity by the hour with no long-term
commitments.

The VM instances are charged with the on spot cost σji for SaaS j hosted

43

3.2. GENERALIZED NASH GAME MODEL

at IaaS i and fluctuates periodically depending on the IaaS provider time of
the day energy costs ωi, on the supply of VMs and demand from SaaS for on
spot VMs. On spots costs fluctuate according to the time of the day and on
the Cloud site region, and we assume lower than an upper bound σMax

ji . On
spot upper bound cost must be strictly lower than δi, the on demand VM time
unit cost, because no one is willing to pay for a less reliable resource a time
unit cost higher than on demand instances which provide a higher availability
level, as presented in Section 2.2.2. On spot instances have been traditionally
adopted to support batch computing intensive workload during peak periods,
but we advocate the use also for traditional transactional services. The
reserved instances time-unit cost is equal to ρi, according to the SLA contract,
and each SaaS j cannot have more than Rji at IaaS i.

Finally, we denote with ηj the maximum fraction of resources allocated
as on spot VMs for SaaS provider j, in order to set an upper bound for the
reserved+ on demand

on spot
ratio to allow a reasonable reliability for every WS applica-

tion k.

3.2 Generalized Nash game model

In this section we formulate the resource provisioning problem for the
Cloud Computing system under study as a Generalized Nash Equilibrium
Problem (GNEP) (see Appendix A). The goal of SaaS provider j is to deter-
mine every hour the number of reserved rki VMs, on demand dki, on spot ski
VMs and the throughput xki in order to minimize its costs and, at the same
time, to satisfy the prediction Λk for the arrival rate of the WS application
k of SaaS j running at IaaS i to avoid the risk of paying penalties.

Let us denote with µki the maximum service rate for the requests of
application k, if the workload is evenly shared among the VMs, then the
average response time for execution of application k requests is given by:

E [Rki] = Dki +
1

µki −
(

xki
rki+dki+ski

) ,
where Dki denotes the queuing network delay (see Figure 3.2) and we further
assume that the VMs are not saturated (i.e., the equilibrium conditions for
the M/G/1 queues hold, [µki (rki + dki + ski)− xki]> 0.

With this settings in mind, the problem that the generic SaaS provider j
has to periodically solve becomes:

44

CHAPTER 3. A GAME THEORY SERVICE PROVISIONING MODEL

min
rki,dki,ski,xki

Θj =
∑
k∈Aj

∑
i∈Ij

(ρi rki + δi dki + σji ski) +
∑
k∈Aj

[T νk (Λk −Xk)] (3.1)

subject to the constraints:

Dki +
1

µki − xki
rki+dki+ski

≤ Rk ∀ k ∈ Aj,∀i ∈ Ij, (3.2)

0 ≤ ski ≤
ηj

1− ηj
(rki + dki) ∀ k ∈ Aj,∀i ∈ Ij, (3.3)

xki<µki (rki + dki + ski) ∀ k ∈ Aj,∀i ∈ Ij, (3.4)∑
k∈Aj

rki ≤ Rji ∀i ∈ Ij, (3.5)

∑
k∈Ai

(rki + dki + ski) ≤ Ni ∀ i ∈ Ij. (3.6)∑
i∈Ij

xki = Xk ∀k ∈ Aj, (3.7)

λk ≤ Xk ≤ Λk ∀ k ∈ Aj, (3.8)

rki, dki, ski, xki ≥ 0 ∀ k ∈ Aj,∀i ∈ Ij. (3.9)

The SaaS goal is to minimize its payoff function (3.1) which includes the
fees requested by the IaaSs for instances used and the penalties incurred
when requests are discarded.

Constraint (3.2) ensures that the response time is lower than the thresh-
old Rk established in the SLA contract. Constraint (3.3) is introduced for
fault tolerance reasons, as explained before, and guarantees that the on spot
instances are at most a fraction ηj < 1 of the total capacity allocated for
application k at IaaS i. With (3.4) we guarantee that resources are not
saturated.

Constraints (3.5) and (3.6) entail that allocated VMs are less or equal
to the maximum number offered or guaranteed by the IaaS providers. Con-
straint (3.5) depends only on applications running at SaaS j, while constraint
(3.6) refers to all applications of the set of SaaSs running at IaaS i.

In addition to response time constraints and the virtual machines num-
ber due to IaaSs limited capacity there are the throughput constraints. Con-
straints (3.7) defines the total traffic served by the system as a fraction of the
one served by individual IaaSs. Furthermore (3.8) establish a lower bound
λk for the total throughput needed to satisfy SLA contracts and an upper
bound Λk which is equal to the total incoming workload.

45

3.2. GENERALIZED NASH GAME MODEL

We remark that, in the formulation of the problem, we have imposed
variables rki, dki and ski to be greater or equal to zero (3.9), but not integer,
as in reality they are. In fact, requiring variables to be integer makes the
solution much more difficult (NP-hard). We therefore decide to deal with
continuous variables, actually considering a relaxation of the problem.

On the other side, the IaaS providers’ goal (3.10) is to determine the
time unit cost σji for on spot VM instances for SaaS provider j running
applications at IaaS i, in order to maximize their total revenue:

max
σji

Θi =
∑
k∈Ai

[(ρi − ωi) rki + (δi − ωi) dki + (σji − ωi) ski] (3.10)

with this constraints regarding the on spot cost variables and parameters:

ωi ≤ σji ∀ j ∈ Si, (3.11)

σji ≤ σMax
ji ∀ j ∈ Si. (3.12)

The on spot instance cost lower bound (3.11) is the energy cost for running
a single VM instance for one hour according to the time of the day, and the
upper bound (3.12) is a fixed value σMax

ji , lower than the δi price for the on
demand VMs, established by the SaaS j provider.

In this framework, SaaS providers and the IaaS providers are making
decisions at the same time. The decisions of a SaaS depend on those of the
others SaaS and the IaaS, while the IaaS objective function depends on SaaS
decisions. In this setting, we can not analyze decision in isolation, but we
must ask what a SaaS would do, taking into account the decision of the IaaSs
and other SaaSs.

To capture the behavior of SaaSs and IaaSs in this conflicting situation
(game) in which what a SaaS or the IaaS (the players of the game) does
directly affects what others do, we consider the Generalized Nash game,
which is broadly used in Game Theory and other fields. We remind the
reader that the GNEP differs from the classical Nash Equilibrium Problem
since, not only the objective functions of each player (called payoff functions)
depend upon the strategies chosen by all the other players, but also each
player’s strategy set may depend on the rival players’ strategies, thanks to
the limits imposed by the constraint (3.6).

Following the Nash equilibrium concept, SaaS and IaaS providers adopt
a strategy such that none of them can improve its revenue by changing its
strategy unilaterally (e.g., while the other players keep their strategies un-
changed). The service provisioning problem results therefore in a GNEP

46

CHAPTER 3. A GAME THEORY SERVICE PROVISIONING MODEL

where the players are the SaaS providers and the IaaS providers, the strat-
egy variables of SaaS provider j are rki, dki, ski and xki, for k ∈ Aj, while
the strategy variables of the IaaS i are the costs σji for on spot VMs, for all
k ∈ Aj.

For the sake of clarity, the notation adopted here is summarized in Ta-
ble 3.1.

System Parameters

S Set of SaaS providers
I Set of IaaS providers
Si Set of SaaS providers j running applications at IaaS i
Ij Set of IaaS providers supporting SaaS j
A Set of applications of all the SaaS providers
Aj Set of applications of the SaaS provider j
Ai Set of applications running at IaaS i
Λk Prediction of the arrival rate for application k
λk Minimum arrival rate to be guaranteed for application k
µki Maximum service rate for executing class k application at IaaS i
Dki Queueing delay for executing class k application at IaaS i
Rk Application k average response time threshold
νk Penalty for rejecting a single application k request
ρi Time unit cost for reserved VMs for SaaS providers at IaaS i
δi Time unit cost for on demand VMs for SaaS providers at IaaS i
ωi VM time unit energy cost for IaaS provider i
ηj Maximum fraction of total resources allocated as on spot VMs for SaaS provider j
Ni Maximum number of VMs that can be executed at the IaaS i
Rji Maximum number of reserved VMs that can be executed for the SaaS j at IaaS i
σMax
ji Maximum time unit cost offered by IaaS i for on spot VMs instances of SaaS j
T Control time horizon

SaaS Decision Variables

rki Number of reserved VMs used for application k at IaaS i
dki Number of on demand VMs used for application k at IaaS i
ski Number of on spot VMs used for application k at IaaS i
xki Throughput for application k at IaaS i
Xk Overall throughput for application k

IaaS Decision Variables

σji Time unit cost set by IaaS i to SaaS j for on spot VMs instances

Table 3.1: Parameters and decision variables.

47

3.3. GAME ANALYSIS

3.3 Game analysis

In this section we study the properties of the game formulated in Section
3.2 in order to demonstrate that for the IaaSs there are dominant strategies,
and then we calculate the incentive of all players to change their strategy
using a single global function called the potential function.

3.3.1 Dominant strategies for IaaSs

Property 3.3.1. σji = σMax
ji is a dominant strategy for each IaaS i ∈ I.

Proof. In (3.10) we want to maximize the revenue for every IaaS present in
the Cloud world. Analyzing the constraints (3.11) and (3.12) we notice that
they are only bounding IaaS decision variable σji, and since with Θi we want
to reach the maximum possible gain, we can set σji = σMax

ji ∀i ∈ Ij. In this
way we can drop IaaS providers in the game formulation. Furthermore, the
SaaS provider payoff function becomes:

min
rki,dki,ski,xki

Θj =
∑
k∈Aj

∑
i∈Ij

[
ρi rki + δi dki + σMax

ji ski + T νk (Λk −Xk)
]
.

3.3.2 Game potential

The model resulting from the optimization problems described in the
previous sections is a Generalized Nash Equilibrium Problem with joint
constraints, where the players are the SaaS providers whose strategies are
rki, dki, ski, xki.

Since every SaaS objective function is independent from that of all other
SaaS we can conclude that this game is a potential game [69] where the
potential function is shown in the following result.

Property 3.3.2. The function

Π (xki, rki, dki, ski) =
∑
j∈S

∑
k∈Aj

∑
i∈Ij

(
ρi rki + δi dki + σMax

ji ski − T νk xki
)

is a potential for the game.

48

CHAPTER 3. A GAME THEORY SERVICE PROVISIONING MODEL

Proof. In order to calculate the game potential, we have to consider only the
objective functions part that use decision variables. Given the simplification
obtained in Section 3.3.1, in the calculation of the potential, we can only
consider Θj,

Θj =
∑
k∈Aj

∑
i∈Ij

(
ρi rki + δi dki + σMax

si ski
)

+
∑
k∈Aj

[T νk (Λk −Xk)]

where we replace Xk with the
∑
i∈Ij

xki as stated in (3.7),

Θj =
∑
k∈Aj

∑
i∈Ij

(
ρi rki + δi dki + σMax

si ski
)

+
∑
k∈Aj

T νk Λk −
∑
i∈Ij

xki

 =

=
∑
k∈Aj

∑
i∈Ij

(
ρi rki + δi dki + σMax

si ski − T νk xki
)

+
∑
k∈Aj

(T νk Λk) ,

then dropping T νk Λk, since it is a constant, we get Π =
∑
j∈S

Θj.

3.3.3 Analysis of constraints

We want to demonstrate that the only non-linear constraint present in
the formulation can be rewritten as linear, that allow us to use linear solver
that give us a solution faster than those for non-linear formulations.

Property 3.3.3. In any equilibrium condition for every SaaS j, constraint
(3.2) holds as equality.

Dki +
1

µki − xki
rki+dki+ski

= Rk ∀ k ∈ Aj,∀i ∈ Ij (3.13)

Proof. Assume, by contradiction to have a solution
(
rki, dki, ski, xki

)
such

that

Dki +
1

µki − xki
rki+dki+ski

<Rk ∀ k ∈ Aj,∀i ∈ Ij,

49

3.3. GAME ANALYSIS

if we substitute rki with r̃ki = rki − ε, dki with d̃ki = dki − ε and ski
with s̃ki = ski − ε, keeping fixed the other decision variable xki and pa-

rameters, we will obtain a new solution vector
(
r̃ki, d̃ki, s̃ki, xki

)
, such that

Θj

(
r̃ki, d̃ki, s̃ki, xki

)
>Θj

(
rki, dki, ski, xki

)
, that is impossible.

Furthermore, after some algebra, constraint (3.13) can be written as

[1− pki µki] (rki + dki + ski) + pki xki = 0 ∀ k ∈ Aj,∀i ∈ Ij,

where pki =
(
Rk −Dki

)
.

Indeed, from (3.2), since pki, [µki (rki + dki + ski)− xki] and (rki + dki + ski)
are positive:

1
µki(rki+dki+ski)−xki

rki+dki+ski

= pki

rki + dki + ski
µki (rki + dki + ski)− xki

= pki

rki + dki + ski = pki [µki (rki + dki + ski)− xki]
rki + ski = pki µki (rki + dki + ski)− pki xki

[1− pki µki] (rki + dki + ski) + pki xki = 0 ∀k ∈ Aj,∀i ∈ Ij.

Thanks to the previous result we can drop xki variables and the constraint
family (3.4) and we get:

xki =

[
pkiµki − 1

pki

]
(rki + dki + ski) =

[
µki −

1

pki

]
(rki + dki + ski) (3.14)

Now we can substitute the result obtained in (3.14) in the constraint (3.4)
under analysis, having as result:

[
µki −

1

pki

]
(rki + dki + ski)<µk (rki + dki + ski)

that simplified as [
µki −

1

pki

]
< µki

50

CHAPTER 3. A GAME THEORY SERVICE PROVISIONING MODEL

and since pki is positive as shown above, become always true, hence constraint
(3.4) then can be eliminated from the game formulation.

Furthermore constraints (3.7) and (3.8) can be rewritten as

λk ≤
∑
i∈Ij

xki ≤ Λk ∀k ∈ Aj.

At this point of our discussion, it is fundamental to examine the relation
between penalties and costs of VMs. To better understand the SaaS point of
view we will show the trade-off between the payments due to the rejection
or to the use of the VMs.

Assume that SaaS j is using only on demand VMs at a certain hour of the
day. Reminding that Λk is the prediction of the arrival rate for application
k, from the algebra discussed in the proof of Property (3.3.3), we can write:

(1− pkiµki) dki + pkiΛk = 0

from which we obtain an expression for the number of reserved VMs at site
i to execute the entire class k (i.e., Λk requests):

dki =
pki

pkiµki − 1
Λk.

Multiplying the last expression for the time unit cost for on demand VMs δi,
we have an upper bound of the total cost per hour:

Ψi = δi
pkiΛk

pkiµki − 1
.

Finally, the unit cost per hour to execute the request k is:

Ψunit
i =

δipki
pkiµki − 1

.

In practice, rejecting requests is not convenient for the SaaS. Indeed,
SaaS providers choose this solution only if there are no possibilities to pay
for the use of VMs. This is the reason why we need to add to our problem
a fundamental hypothesis which is satisfied in the current practice and that
links penalties with VMs costs:

max
i

δipki
pkiµki − 1

<< νk (3.15)

where νk indicates the penalty to be paid for every rejected request. There-
fore, the above assumption expresses the tradeoff between the two different

51

3.3. GAME ANALYSIS

payment values: in the optimization process the SaaS will use all the VMs
available and avoid rejecting as far as possible.

Taking into account the above discussion on the relation between penalty
and VMs costs, we can consider another property of the game that links
constraints (3.4) and (3.5), having for simplicity:

cki = µki −
1

Rk −Dki

= µki −
1

pki
.

.

Property 3.3.4. Given an equilibrium of the GNEP. If it exists an applica-
tion k ∈ Aj such that ∑

i∈Ij

cki (rki + dki + ski) < Λk

SaaS variables rki satisfy constraint (3.5) as equality:∑
k∈Aj

rki = Rji ∀i ∈ Ij .

Proof. Suppose, by contradiction, to have∑
k∈Aj

rki < Rji ∀i ∈ Ij ,

which means that the SaaS j is using less reserved instances than the available
at each IaaS i for it. This happens only when the SaaS cannot wish to improve
its payoff function Θj. Given Property 3.15, this reflects in:∑

i∈Ij

cki (rki + ski) < Λk ∀k ∈ Aj ,

that is impossible.

3.3.4 Game model reformulation

Thanks to the simplifications, analysis and the dominant strategy studied
in the previous sections we can reformulate the game model, coming to a more
compact formulation as below.

52

CHAPTER 3. A GAME THEORY SERVICE PROVISIONING MODEL

min
rki, dki, ski

Θj =
∑
k∈Aj

∑
i∈Ij

ρi rki + δi dki + σMax
ji ski −

−
∑
k∈Aj

∑
i∈Ij

[
µki −

1(
Rk −Dki

)] (rki + dki + ski) T νk (3.16)

subject to:

0 ≤ ski ≤
ηj

1− ηj
(rki + dki) ∀ k ∈ Aj, ∀i ∈ Ij (3.17)

λk ≤
∑
i∈Ij

[
µki −

1(
Rk −Dki

)] (rki + dki + ski) ∀ k ∈ Aj (3.18)

∑
i∈Ij

[
µki −

1(
Rk −Dki

)] (rki + dki + ski) ≤ Λk ∀ k ∈ Aj (3.19)

∑
k∈Aj

rki ≤ Rji ∀i ∈ Ij (3.20)

∑
k∈Ai

(rki + dki + ski) ≤ Ni ∀ i ∈ Ij (3.21)

rki, dki, ski, xki ≥ 0 ∀ k ∈ Aj, ∀i ∈ Ij (3.22)

3.4 A distributed algorithm for identifying

Generalized Nash Equilibria

We now present an algorithm (see Figure 3.3) for finding a Generalized
Nash Equilibrium. In order to simplify the notation, we denote by

yj := (rki, dki, ski)k∈Aj ,i∈Ij

the strategy vector of SaaS j, by gj(yj) ≤ 0 the constraints of SaaS j which
are independent from strategies of other players, and by

hi(y) :=
∑
j∈Si

∑
k∈Aj

(rki + dki + ski)−Ni ≤ 0 ∀ i ∈ I,

the shared constraints.
At first iteration each SaaS provider j finds the optimal solution ỹj of his

relaxed problem where the joint constraints are removed. If the solution ỹ

53

3.4. A DISTRIBUTED ALGORITHM FOR IDENTIFYING
GENERALIZED NASH EQUILIBRIA

satisfies the shared constraints, then it is a social equilibrium. Otherwise,
for each IaaS provider i such that the corresponding shared constraint hi
is violated by ỹ, the VMs of IaaS i are shared proportionally among SaaS
providers according to the solution ỹ, i.e., we set the number:

Nij =

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)∑
j∈Si

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)
Ni

of the resources of IaaS i which will be used by SaaS j in the successive
iterations. Next, each SaaS provider solves his own problem with these new
individual constraints. If all the shared constraints are satisfied in the new
solution, then it is a Generalized Nash Equilibrium, otherwise we compute
Nij for each violated shared constraint and we add to each SaaS provider the
corresponding constraints as before.

Theorem 3.4.1. The algorithm in Figure 3.3 finds a Generalized Nash Equi-
librium after a finite number of iterations.

Proof. We note that the set IL represents the set of IaaS providers with
limited resources with respect to the requests of SaaS providers at previous
iterations, while IN represents the set of IaaS providers with limited resources
with respect to the requests of SaaS providers at the current iteration. The
algorithm stops a finite number of iterations because IL is a subset of I with
increasing cardinality, thus after a finite number of iterations the set IN ,
which is a subset of I \ IL, becomes empty.

Two cases can occur: either the algorithms stops at the first iteration
with IL = ∅ or it stops after several iterations with IL 6= ∅.

In the first case we prove that the found solution ỹ is a social equilibrium.
In fact, each SaaS provider j finds individually the optimal solution ỹj of the
relaxed problem without the shared constraints, thus there are optimal KKT
multipliers β̃j such that the following system holds for all j ∈ S:

∇Θj(ỹj) + β̃Tj ∇gj(ỹs) = 0

β̃Tj gj(ỹj) = 0

β̃j ≥ 0
gj(ỹj) ≤ 0.

Since ỹ also satisfies all the shared constraints, i.e. hi(ỹ) ≤ 0 for all i ∈ I,

then (ỹ, β̃, γ̃), with γ̃ij = 0 for all i ∈ I and j ∈ Si, solves the KKT system

54

CHAPTER 3. A GAME THEORY SERVICE PROVISIONING MODEL

0. (Inizialization) Set IL = ∅.

1. (Solution of relaxed subproblems)

for all j ∈ S do

Find an optimal solution ỹj of

{
min Θj(yj)
gj(yj) ≤ 0

end

2. (Stopping criterion)

Compute the set IN := {i ∈ I \ IL : hi(ỹ) > 0}.
if IN = ∅ then STOP.

else compute

Nij =

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)∑
j∈Si

∑
k∈Aj

(r̃ki + d̃ki + s̃ki)
Ni ∀ i ∈ IN , ∀ j ∈ Si,

and set IL := IL ∪ IN .

3. (Solution of new subproblems)

for all j ∈ S do

Find an optimal solution ỹj of
min Θj(yj)
gj(yj) ≤ 0
hij(yj) :=

∑
k∈Aj

(rki + dki + ski)−Nij = 0, ∀ i ∈ IL ∩ Ij
(3.23)

end

and go to step 2.

Figure 3.3: Algorithm for finding Generalized Nash Equilibria.

55

3.4. A DISTRIBUTED ALGORITHM FOR IDENTIFYING
GENERALIZED NASH EQUILIBRIA

associated to the social problem
min

∑
j∈S

Θ(yj)

gj(yj) ≤ 0, ∀ j ∈ S,
hi(y) ≤ 0, ∀ i ∈ I.

Since the social problem is linear, it follows that ỹ is a social equilibrium.
We now consider the second case: the algorithm stops after several iter-

ations with IL 6= ∅. For each SaaS j we know that ỹj is an optimal solution

of the problem (3.23), thus there are KKT multipliers (β̃j, γ̃ij) such that the
following system holds:

∇Θj(ỹj) + β̃Tj ∇gj(ỹj) +
∑

i∈IL∩Ij
γ̃ij∇hij(ỹj) = 0

β̃Tj gj(ỹj) = 0
hij(ỹj) = 0, ∀ i ∈ IL ∩ Ij

β̃j ≥ 0
gj(ỹj) ≤ 0.

We note that multipliers γ̃ij are nonnegative because if there was a γ̃ij < 0,
then the SaaS j could reduce his objective function if the constraint on the
VMs of the IaaS i was ∑

k∈Aj

(rki + dki + ski) < Nij,

but this is impossible because in a previous iteration the SaaS j had
already requested the IaaS i more than Nij VMs.

For each i ∈ IL we have

hij(ỹj) = 0, ∀ j ∈ Si,

which is equivalent to∑
k∈Aj

(r̃ki + d̃ki + s̃ki) = Nij, ∀ j ∈ Si,

thus

hi(ỹ) =
∑
j∈Si

∑
k∈Aj

(rki + dki + ski)−Ni =
∑
j∈Si

Nij −Ni = 0,

i.e., the shared constraint hi is active at ỹ.

56

CHAPTER 3. A GAME THEORY SERVICE PROVISIONING MODEL

Moreover, we note that ∇hij(yj) = ∇yjhi(y). If we define γ̃ij = 0 for all
i ∈ (I \ IL) ∩ Ij, then ỹj satisfies the following system:

∇Θj(ỹj) + β̃Tj ∇gj(ỹj) +
∑
i∈Ij

γ̃ij∇yjhi(ỹ) = 0

β̃Tj gs(ỹj) = 0,
γ̃ij hi(ỹ) = 0, ∀ i ∈ Ij,

β̃j ≥ 0
gj(ỹj) ≤ 0
γ̃ij ≥ 0, ∀ i ∈ Ij
hi(ỹ) ≤ 0, ∀ i ∈ Ij.

This means that ỹj is the optimal solution of the problem:
min Θj(yj)
gj(yj) ≤ 0
hi(yj, ỹ−j) ≤ 0, ∀ i ∈ Ij,

that is ỹj is the best reply of player j to the strategies ỹ−j of the other players.
i.e., ỹ is a Generalized Nash Equilibrium.

57

3.4. A DISTRIBUTED ALGORITHM FOR IDENTIFYING
GENERALIZED NASH EQUILIBRIA

58

Chapter 4

Tools

In this thesis we have developed a software that uses optimization model-
ers and solvers such as AMPL and CPLEX for solving the problems described
in the previous chapter, which will be introduced in Section 4.1 and 4.2.

Afterward Section 4.3 and Section 4.4 describe some tools we have used to
estimate the performance parameters of Cloud applications with a workload
injector we developed (outlined in Section 4.5) able to automate testing in a
Cloud platform.

Finally, in Section 4.6 we present a set of tools we developed to perform
analytical analyses in order to validate our algorithm and perform experi-
ments that are the focus of the next chapter.

4.1 AMPL

AMPL is the acronym for “A Modeling Language for Mathematical Pro-
gramming” [11], developed by Robert Fourer, David Gay and Brian Kernighan
at Bell Laboratories: it is an algebraic modeling language for linear and non-
linear optimization problems, in discrete or continuous variables. AMPL does
not solve problems directly; instead it communicates with another mathemat-
ical software called solver which is responsible for finding the problem’s best
solution.

One of the main advantages of AMPL is its syntax: it is very similar to
the mathematical optimization problems notation making it very readable
and simple to understand. It is available for the most important 32- and
64-bit platforms including Linux, Mac OS X and Windows and there is a
free student version limited only in the number of variables and constraints.

This tool is ideal for model development and we used it to model the sites
resource allocation and the algorithms presented in this thesis.

59

4.2. CPLEX

There are several solvers available on the market, each developed to solve
a single or more problems classes. Concerning linear programming the most
used is CPLEX which can solve continuous, integer and network problems.
Regarding nonlinear programming there is not a unique solver which can
solve every problem type because of the complexity of this field: there are
CPLEX and MOSEK for quadratic problems, MOSEK and SNOPT for con-
vex ones, SNOPT and KNITRO for continuous and finally MINLP for integer
ones.

4.2 CPLEX

For our model we used CPLEX 12.2.0.0 [50] as solver, since its capabilities
cover all our requirements. CPLEX is designed to solve linear programs of
AMPL, as well as the integer programs. Integer programs may be pure (all
integer variables) or mixed (some integer and some continuous variables);
integer variables may be binary (taking values 0 and 1 only) or may have
more general lower and upper bounds. For the network linear programs,
CPLEX also incorporates an especially fast network optimization algorithm.

The barrier algorithmic option to CPLEX, though originally designed to
handle linear programs, also allows the solution of a special class of nonlinear
problems, namely, quadratic programs (QPs). However, CPLEX does not
solve general (non-QP) nonlinear programs.

4.2.1 CPLEX algorithms for continuos optimization

For problems with linear constraints, CPLEX employs either a simplex
method or a barrier method to solve the problem. Four distinct methods of
optimization are incorporated in the CPLEX package:

• a primal simplex algorithm that first finds a solution feasible in the
constraints, then iterates toward optimality;

• a dual simplex algorithm that first finds a solution satisfying the opti-
mality conditions, then iterates toward feasibility;

• a network primal simplex algorithm that uses logic and data structures
tailored to the class of pure network linear programs;

• a primal-dual barrier (or interior-point) algorithm that simultaneously
iterates toward feasibility and optimality, optionally followed by a pri-
mal or dual crossover routine that produces a basic optimal solution.

60

CHAPTER 4. TOOLS

For problems with quadratic constraints, only the barrier method is used
and there is no crossover algorithm.

The simplex algorithm maintains a subset of basic variables (or, a basis)
equal in size to the number of constraints. A basic solution is obtained by
solving for the basic variables, when the remaining nonbasic variables are
fixed at appropriate bounds.

Each iteration of the algorithm picks a new basic variable from the non-
basic ones, steps to a new basic solution, and drops some basic variable at
a bound. The coefficients of the variables form a constraint matrix, and
the coefficients of the basic variables form a nonsingular square submatrix
called the basis matrix. At each iteration, the simplex algorithm must solve
certain linear systems involving the basis matrix. For this purpose CPLEX
maintains a factorization of the basis matrix, which is updated during most
iterations, and is occasionally recomputed. The sparsity of a matrix is the
proportion of its elements that are not zero. The constraint matrix, basis
matrix and factorization are said to be relatively sparse or dense according
to their proportion of nonzeros. Most linear programs of practical interest
have many zeros in all the relevant matrices, and the larger ones tend also
to be the sparsest.

The amount of RAM memory required by CPLEX grows with the size
of the linear program, which is a function of the numbers of variables and
constraints and the sparsity of the coefficient matrix. The factorization of
the basis matrix also requires memory allocation; the amount is problem-
specific, depending on the sparsity of the factorization. When memory is
limited, CPLEX automatically makes adjustments that reduce its require-
ments, but that usually also reduce its optimization speed. For these reasons
after a first version of the model implementation we had to compute a code
optimization due to an high memory usage and consequent slowdown of the
optimization speed for large instances. Optimization has focused in particu-
lar on parameters loading, set definitions and the subscripts of the variables
in the model.

4.3 SPECweb 2005

SPECweb2005 [86] is the Standard Performance Evaluation Corpora-
tion (SPEC) benchmark for evaluating the performance of World Wide Web
Servers. SPECweb2005 continues the SPEC tradition of giving Web users
the most objective and representative benchmark for measuring a system
ability to act as a web server. The SPECweb2005 benchmark includes many
sophisticated features like:

61

4.3. SPECWEB 2005

• measures simultaneous user sessions,

• relevant dynamic content: ASPX, JSP, and PHP implementations in-
cluded,

• page requests through parallel HTTP connections,

• multiple, standardized workloads: Banking (HTTPS), E-commerce
(HTTP and HTTPS), and Support (HTTP),

• file accesses closely matching today’s real-world web server access pat-
terns.

The SPEC defined a set of rules that has to be fulfilled in order to obtain
fair results that can be actually published. The SPECweb tool consists of 3
main components:

• web applications,

• back-end simulator,

• load generator.

A set of 3 web applications emulate different type of websites. These
applications have to be deployed on the system that will be tested. Real
world web applications usually make use of a back-end system in order to
reply to user requests. The back-end simulator (BeSim) is used to supply web
applications with data requested by the user. This part of the tool has been
introduced with the intent to better emulate the environment on which the
tested system is going to work. BeSim has been developed in order to avoid
bottleneck on this part of the system and efficiently test the web server. The
load generator is used to produce the requests that the web server is going
to serve. It is composed of 2 logical components:

• Prime Client,

• Client.

The Prime Client is a tool that coordinates many clients, that may be
running on many machines, in order to produce the desired workload and
gather statistics. The Client is a piece of software that can be run many
times concurrently on the same machine or on remote systems, the main job
of clients is to generate the workload as specified by the prime client.

The system that will actually be tested is the one on which the web
server runs. In order to test entirely the system SPECweb provides 3 web
applications called banking, e-commerce and support:

62

CHAPTER 4. TOOLS

• Banking application emulates a web site of an online bank which let
the user log into his account, transfer founds and make payments. The
main characteristic of this application is that most of the connections
are SSL based so the web server has to decode messages before process-
ing them. This task generates heavy load on the CPU of the system.

• E-commerce application is used to emulate a big variety of web appli-
cations, it consists of an e-commerce web site that let the user search,
customize and buy products. The requests to this applications are a
mix of http and https. E-commerce application is not designed to stress
a single component of the system.

• Support application is used to stress the network interface of the sys-
tem. It emulate a website that hosts files of different size (to a maxi-
mum of 40MB).

Clients generate random pattern of requests in order to emulate differ-
ent users according to a Markov chain model which probabilities has been
calculated using logs of real websites.

SPECweb tests are characterized by SIMULTANEOUS SESSIONS parame-
ter, that represents the number of users connected to the web server during
the entire duration of the analysis. This value cannot be modified during
test execution and consequently we cannot deploy a test characterized by a
fluctuating number of users. For this reason we developed a tool based on
Apache JMeter [12], described below, with the aim of replacing the limited
SPECweb client.

4.4 JMeter

Apache JMeter is an open source and cross platform software, a 100%
pure Java application designed to load test functional behavior and measure
performance. It was originally designed for testing Web Applications but
has since expanded to other test functions. It is part of the Apache Jakarta
Project. It can be used to simulate a heavy load on a server to test its
strength or to analyze overall performance under different load types. JMe-
ter can be used to make a graphical analysis of performance or to test a server
behavior under heavy concurrent load. Apache JMeter can load and test the
performance of many different server types: Web - HTTP, HTTPS, SOAP,
Database via JDBC, LDAP, JMS, Mail - POP3(S) and IMAP(S). Apache
JMeter main features are: full multithreaded framework, careful GUI design

63

4.4. JMETER

allows faster operation and more precise timings, caching and offline anal-
ysis/replaying of test results, highly extensible. As far as web-services and
remote services are concerned, JMeter looks like a browser (or rather, mul-
tiple browsers); however JMeter does not perform all the actions supported
by browsers. In particular, JMeter does not execute the Javascript found in
HTML pages. Nor does it render the HTML pages as a browser does.

JMeter tests

JMeter tests are specified in .jmx files, each one representing a Test Plan.
The Test Plan object has a checkbox called “Functional Testing”. If selected,
it will cause JMeter to record the data returned from the server for each
sample.

The main elements of a test plan are:

• A ThreadGroup, the starting point of any test plan. It sets: the number
of threads, the ramp-up period, the number of times to execute the test.

• Samplers, tell JMeter to send requests to a server and wait for a re-
sponse. They are processed in the order they appear in the tree. JMeter
samplers include: FTP Request, HTTP Request, JDBC Request, Java
object request, LDAP Request, SOAP/XML-RPC Request, WebSer-
vice (SOAP) Request.

• Logic Controllers, allow to customize the logic that JMeter uses to
decide when to send requests. Logic Controllers can change the order
of requests coming from their child elements.

• Listeners, provide access to the information JMeter gathers about the
test cases while JMeter runs. The Graph Results listener plots the
response times on a graph.

• Timers, by default, a JMeter thread sends requests without pausing
between each request. The timer will cause JMeter to delay a certain
amount of time before each sampler which is in its scope.

We decided to utilize JMeter for our purpose because of its usability and
flexibility to create our own test plan which emulate workloads and users
behavior of SPECweb tests.

64

CHAPTER 4. TOOLS

4.5 SPECweb deployment in the Cloud

The main problem of using SPECweb to test the Cloud is that this tool
has been developed to target a different kind of platforms. It requires some
initializations steps that could not be easily performed in a dynamic environ-
ment such as the Cloud, it cannot handle dynamic number of simultaneous
sessions, and there is no management or monitoring tools for Cloud infras-
tructures. Therefore we report both SPECweb and JMeter functionalities
in order to better understand how we merge them into a new tool able to
manage them in the Cloud.

4.5.1 SPECweb tests

Behaviour

SPECweb load injectors work in a closed model environment. Simultane-
ous sessions are started with a fixed number of users and continuously send
dynamic pages with an average interval of 10 seconds (THINK TIME) between
them, then they access to a new page, or leave the system.

Every test starts with his own configuration file, with fixed parame-
ters, and stable behavior during the workloads execution time. The dia-
gram in Figure 4.1 reflects the different iteration/phases for the Banking,
E-commerce, and Support workloads.

• Phase A: ramp-up period is the time period across which the load
generating threads are started. This phase is designed to ramp up user
activity rather than beginning the benchmark run with an immediate
and full-load spike in requests and sends at least one request per user
thread.

• Phase B: the warm-up period is intended to be a time during which the
server can initialize its cache prior to the actual measurement interval.
At the end of the warm-up period, all results are cleared from the load
generator, and recording starts a new one. Accordingly, any errors
reported prior to the beginning of the run period will not be reflected
in the final results for this benchmark run.

• Phase C: the run period is the interval during which benchmark results
are recorded. The results of all requests sent and responses received
during this interval will be recorded in the final benchmark results.
During this phase the system power data is collected for later retrieval
into the results files by the harness.

65

4.5. SPECWEB DEPLOYMENT IN THE CLOUD

Figure 4.1: SPECweb 2005 test diagram.

• Phase D: the thread ramp-down period is simply the inverse of A.
It is the period during which all load-generating threads are stopped.
Although load generating threads are still making requests to the server
during this interval, all recording of results will have stopped at the end
of the run period.

• Phase E: the ramp-down period is the time given to the client and
server to return to their “unloaded” state. This is primarily intended
to assure sufficient time for TCP connection clean-up before the start
of the next test iteration.

• Phase F: the ramp-up period replaces the warm-up period, B, for the
second and third benchmark run iterations. It is presumed at this point
that the server’s cache is already primed, so it requires a shorter period
of time between the thread ramp-up period and the run period for these
subsequent iterations in order to reach a steady-state condition.

SPECweb Markov chain

A Markov Chain is a random process characterized as memoryless: the
next state depends only on the current state and not on the sequence of
events that preceded it. This specific kind of “memorylessness” is called the
Markov property.

66

CHAPTER 4. TOOLS

As stated before, SPECweb adopts this models of property for specifying
the path of the user in the system emulated. As illustrated in Figure 4.2, the
execution flows through the chain according to different values of probability,
obtained from the analysis of users behavior in real systems. SPECweb
implements the chain’s edges with HTTP requests (GET, PUT, POST, ...)
to the web server and each state is a single web page.

Figure 4.2: SPECweb banking test Markov chain.

4.5.2 JMeter extension

Initialization of the test environment

The first step we had to implement is an analysis of the startup phase
of SPECweb. This phase includes the initialization of the web server, of the
backend simulator and their interfacing. In order to do this we used the
.fcgi files of SPECweb to initialize and prepare the Cloud instances to the
new JMeter test environment.

67

4.5. SPECWEB DEPLOYMENT IN THE CLOUD

Behaviour adaptation

One important feature of SPECweb tests is the preconfigured number of
SIMULTANEOUS SESSIONS in the configuration file, that it cannot be dynam-
ically changed at execution time. One of the goal of our tool is to play on
JMeter’s features, in order to have a test with a varying number of simulated
users. To do this we adopted the package of the JMeter Plugins project [53],
that let us to defined a variable number of users for each single execution of
a test.

Markov chain translation

In our tool we translate the SPECweb Markovian test design, describing
the paths of a test execution and designing the correspondent configuration
file with a thread group in JMeter. At run-time, a particular path will be
chosen according to its probability in the Markov chain of its workload in
SPECweb.

Figure 4.3: Markov chain example in JMeter.

The original JMeter provided by Apache does not include any feature
to implement a Markov chain, so we adopted a plug-in developed by the
University of Kiel, called Markov4JMeter [60], that allowed us to define the
states of SPECweb’s chain within the JMeter client (Figure 4.3) and the
behaviours with simple .csv files containing the transitions probabilities as,
for example, in Listing 4.1.

68

CHAPTER 4. TOOLS

Listing 4.1: Sample file of behaviors

,‘‘Index ’’,‘‘Sign On’’,‘‘View ’’,‘‘Sign Off ’’,‘‘$’’

‘‘Index *’’,0,0.2,0.8,0,0

‘‘Sign On ’’,0.2,0,0.6,0.2,0

‘‘View ’’,0,0.2,0.6,0.2,1

‘‘Sign Off ’’,0,0,0,0,1

4.5.3 SPECmeter

Therefore, we developed a tool, called SPECmeter, in order to manage
the functionalites reported above, to automatize and to make simpler the
deployment of our injection tests on Amazon EC2 services.

For the sake of clarity in Figure 4.4 is represented the new Cloud archi-
tecture that will be automatically instantiated for each SPECmeter test.

Figure 4.4: SPECmeter architecture.

Through the Amazon’s API, the tool is able to start and configure the
instances we need to run the benchmark. As in Figure 4.5, the Prime Client
launches one or more instances, based on the number of simulated users, that
hosts the JMeter Client, with proper configuration settings, and another two
instances configured respectively as SPECweb web server and BeSim.

When everything is ready, SPECmeter launches the test and starts to
monitoring and logging the virtual machines in terms of usage, traffic, num-
ber of requests, response time and other statistics useful to understand the
performance of the Cloud environment.

69

4.5. SPECWEB DEPLOYMENT IN THE CLOUD

Prime Client JMeter Client(s) Web Server BeSim

start

start + init

start + init

test upload + start

HTTP request
data request

data
response

loop

test results + monitoring

shutdown

monitoring

monitoring

shutdown

shutdown

Figure 4.5: SPECmeter test automation sequence diagram.

At the test completion, the Prime Client downloads and parses results
from Amazon instances and stores them in a proper folder. Then, if there
are no further tests to run, it shutdowns all the instances used.

SPECmeter implementation

Our tool is a Python application that uses a set of libraries to interface
the host with Amazon and the servers we previously deployed in the IaaS.

70

CHAPTER 4. TOOLS

The first one is BOTO, a library able to use the API provided by Amazon.
We used it start or shutdown the Amazon instances and to enable the Cloud-
Watch monitoring service on them. To manage the SSH connections with
our virtual machines we used the Paramiko (aka python-ssh) and the Crypto
libraries are adopted for the private keys usage. With these we are able to
configure the servers, upload and download files and launch the tests (Figure
4.5).

4.6 Cloud analysis tool

In this section we describe the tools we have developed in order to create
the necessary data to perform analysis, run algorithms and then collecting
results for studies that will be performed in Chapter 5.

AMPL works with three type of files: (i) the data files (.dat) that con-
tains the whole database of parameters and input collections for the analysis;
(ii) the mathematical models are contained in .mod files; (iii) functions, al-
gorithms and connections among the analysis phases are contained in .run

files, in a nutshell these files coordinate the run and solution of optimization
problems.

Each analysis shares model files, but since we want to emulate different
analysis, different environments and understand how the algorithms operate
in a variety of situation, we develop a set of tools that can be called in order
to automatically generate files that fits with AMPL standards in order to
make analysis simple, fast and automatic.

The algorithm choice is not only concerning the procedure described in
Chapter 3, but also about the alternative algorithms that will be proposed
in the next chapter in order to compare them with our method.

4.6.1 Cloud analysis tool class diagram

The tool for the automation of the analysis is composed by four parts (see
Figure 4.6). The main part is the so called Simulation Manager (SM), that
is able to coordinate all the other components, manage the analysis phases,
collect and analyze results, and finally store logs in the proper folder.

Afterwards, Data Generator (DG) is the set of scripts that generates the
.dat files for the simulation. Changing the proper parameters these scripts
create the necessary sets and the associations between these, and generate
the traffic Λk for each application k, discussed in detail in Chapter 5.

The SM does not interact directly with CPLEX, but only with AMPL,
managing the data loading, handling the model and selecting the algorithm

71

4.6. CLOUD ANALYSIS TOOL

needed. AMPL, once set in the correct manner, can interrogate and cooper-
ate with the solver independently, until the end of the analysis.

get_sets_dat()
get_traffic_dat()
load_ampl_options()
load_cplex_options()
load_algorithms()
load_ampl_files()
start_simulation()
check_infeasiblity()
save_results()

log_folder
algorithm

Analysis Manager

generate_sets_dat()
generate_traffic_dat()

IaaS
SaaS
Applications
IaaS-per-SaaS
hours
traffic_file

Data Generator

call_cplex()
define_sub_problems()
define_parameters()
load_model()
load_parameters()
run_algorithm()
save_logs()

model_files
data_files

AMPL

solve()
write_logs()

feasibility
threads
presolve
log_file
sensitivity

CPLEX

Figure 4.6: Cloud analysis tool class diagram.

4.6.2 Cloud analysis tool sequence diagram

After the description of the classes, we can now describe how they interact
during the simulation (see Figure 4.7).

In the first phase the SM queries the DG with the desired cardinality of
the instance simulated, the time horizon and the real data file to parse for
the traffic generation. Once these files are ready, the SM initialize AMPL,
loads CPLEX options, model and data files.

72

CHAPTER 4. TOOLS

When the initialization phase is finished, the SM selects the algorithm,
loads it into AMPL and starts it. Therefore the loop between AMPL and
CPLEX solver is started until an equilibrium is found. Reached the final
result, the SM analyzes it, reporting and logging an error message if it not
feasible, which means that the equilibrium achieved does not meet all con-
straints. Finally, once everything is checked, results and logs of the simulated
instance are saved in the proper folder.

Analysis
Manager

Data
Generator AMPL CPLEX

set generation

sets.dat file

traffic generation

traffic.dat file

AMPL options loading

CPLEX options loading

.mod and .dat loading

algorithm loading + start

loop

solve

solution

final solution

infeasibility check

save results and logs

Figure 4.7: Cloud analysis tool sequence diagram.

73

4.6. CLOUD ANALYSIS TOOL

74

Chapter 5

Experimental results

In this chapter we will present the experimental results achieved perform-
ing analyses based on the algorithm presented in Chapter 3.

Section 5.1 describes the experiments settings. In Section 5.2 the scal-
ability of our approach is evaluated. Therefore Section 5.3 is dedicated to
describe how we compare our solutions in terms of efficiency by considering
alternative algorithms that can be used for service provisioning. Alternative
algorithms are presented in Section 5.4, while their comparison is reported
in Section 5.5. Finally in the last part, Section 5.6, we analyze the benefits
that can be achieved by SaaS when hosting applications on multiple IaaSs.

5.1 Design of experiments

The analyses performed in this chapter are intended to be representative
of a real Cloud environment. We therefore need to know the performance
guaranteed by a typical Cloud provider, we need to simulate how the SaaS
providers will rely upon the various IaaS and it is also important to replicate
the trend of traffic during the day, both in terms of source and intensity.

Section 5.1.1 shows how we have assessed the range of the performance
parameters and prices for the experiments. Mapping parameters between
IaaSs and SaaSs are explained in Section 5.1.2, moreover in Section 5.1.3
details concerning time and worldwide distribution of traffic are reported.

5.1.1 Parameters generation

In order to evaluate the performance of a Cloud environment we used
SPECmeter on a WS application deployed on an Amazon EC2 instance, as
described in Chapter 4.

75

5.1. DESIGN OF EXPERIMENTS

During our tests we keep the same architecture with one web server,
deployed in a medium-size standard on demand instance in the US East
region in North Virginia, but we varied the number of users with the purpose
of getting a range of values for the service rate µki and the queueing delay
Dki. Figure 5.1 and Figure 5.2 show a typical pattern of the parameters
under analysis collected during a test. The maximum service rate and the
queueing delay have been evaluated with the least squares method using
response time and the Web server utilization collected during the test, as in
[14]. The maximum percentage error on the average response time estimation
is less than 20%.

Figure 5.1: Queueing delay time.

Figure 5.2: Service time.

Given these results we came to a range of [200, 400] req/s for the service
rate and a delay of [0.001, 0.05] s for the queueing center.

Therefore, regarding the Cloud environment sizes, we have considered a
large set of randomly instances obtained varying the model parameters ac-
cording to the ranges reported in Table 5.1, as in other literature approaches

76

CHAPTER 5. EXPERIMENTAL RESULTS

[18] [7] [56] and according to commercial fees applied by IaaS Cloud providers
[9].

µki [200, 400] req/s σMax
ji [0.013, 0.047] $/h

Rk [0.025, 0.1] s ρi [0.048, 0.076] $/h
Dki [0.001, 0.05] s δi [0.12, 0.175] $/h

Table 5.1: Performance parameters and time unit costs.

5.1.2 SaaS to IaaS mapping

A crucial part for the creation of analyses environment concerns the gen-
eration of I, S, A and corresponding sets Ij, Si and Aj. Furthermore choosing
the cardinalities of these sets the associations between IaaS, SaaS and WS
application need to be defined accordingly. Therefore the Data Generator,
as shown in Chapter 4, is started with desired cardinalities and parameters
of associativity between IaaS and SaaS in order to create a suitable .dat file
for the analysis.

Scalability and algorithm efficiency comparison analyses have been per-
formed with different S and A sizes, as will be explained later, in the worst
possible scenario where we consider |I| = 10 and |Ij| = 3 for all j ∈ S, which
means that each SaaS can host applications on 3 different IaaSs. Otherwise
in multiple IaaS analysis is executed changing the |Ij| from 1 to 3 for all
j ∈ S, and keeping fixed the other instances cardinalities, with the aim of
understanding how this association parameter affects the Cloud environment.

Therefore the DG generate through a “shuffle function”, using the Knuth-
Fisher-Yates algorithm, a set S2 of SaaS with a different order than S. In
this manner, during the execution of the algorithms we are sure that the
resolution order of SaaS players does not affect the final equilibrium found.

5.1.3 Traffic generation

We simulated a Cloud environment distributed all over the world, using
real data in terms of both the local and temporal distribution of requests.

With this feature we can emulate a real provider that hosts applications
with different peak hours, different requests sources which means that the
average capacity allocation can highly vary during the day depending on the
hosted WS applications nature.

77

5.1. DESIGN OF EXPERIMENTS

Time distribution of requests

Regarding the simulation of requests that arrive to the various applica-
tions, which means the Λk traffic distributed all over the IaaSs in the game,
we used actual measurements coming from a large website that however, for
privacy reasons, wants to remain anonymous.

The data are sampled every 10 minutes and overall our long trace lasts
for 12 days. Therefore we parsed the source files, we adapted them to the
hourly sampling time, and for each application k we applied a multiplier and
a white noise to each sample, that can differentiate the workload of multiple
classes, as in [14], [56].

Afterwards, in Figure 5.3 and 5.4, are represented respectively the daily
and weekly distribution of requests of our source, while Figure 5.5 display
a workload of a class with Greenwich Mean Time zone generated through
the DG (see Chapter 4). A low workload occurs during the first hours of
the day; the traffic then increases up to reach the peak during the working
hours, before falling back in the night, cyclically, for each day of the week.

0	

100	

200	

300	

400	

500	

600	

700	

1	 4	 7	 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

11
2	

11
5	

11
8	

12
1	

12
4	

12
7	

13
0	

13
3	

13
6	

13
9	

14
2	

Re
qu

es
ts
	 [
re
q	
/	
s]
	

Time	 [10	 min]	

Figure 5.3: Daily time distribution of requests.

78

CHAPTER 5. EXPERIMENTAL RESULTS

0	

100	

200	

300	

400	

500	

600	

700	

1	 20
	

39
	

58
	

77
	

96
	

11
5	

13
4	

15
3	

17
2	

19
1	

21
0	

22
9	

24
8	

26
7	

28
6	

30
5	

32
4	

34
3	

36
2	

38
1	

40
0	

41
9	

43
8	

45
7	

47
6	

49
5	

51
4	

53
3	

55
2	

57
1	

59
0	

60
9	

62
8	

64
7	

66
6	

68
5	

70
4	

72
3	

74
2	

76
1	

78
0	

79
9	

81
8	

83
7	

85
6	

87
5	

89
4	

91
3	

93
2	

95
1	

97
0	

98
9	

10
08
	

Re
qu

es
ts
	 [
re
q/
s]
	

Time	 [10min]	

Figure 5.4: Weekly time distribution of requests.

0	

100	

200	

300	

400	

500	

600	

1	 4	 7	 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

11
2	

11
5	

11
8	

12
1	

12
4	

12
7	

13
0	

13
3	

13
6	

13
9	

14
2	

Re
qu

es
ts
	 [r
eq

/s
]	

Time	 [10	 min]	

Figure 5.5: Generated daily time distribution of requests.

79

5.2. SCALABILITY ANALYSIS

Worldwide distribution of requests

In order to create realistic scenarios we used statistics of a website reached
from every part of the planet, i.e., Facebook, simulating the requests distri-
bution that they published in their annual report [82].

0	

5	

10	

15	

20	

25	

30	

Asia	 Europe	 North	 America	 South	 America	 Africa	 Oceania	

Pe
rc
en

ta
ge
	 o
f	 t
ot
al
	 re

qu
es
ts
	 [%

]	

Request	 loca4on	

Figure 5.6: Worldwide distribution of requests.

Each application is then localized on a statistical basis, as shown in Figure
5.6. According to the assigned location, the daily pattern of arrival rate is
adjusted to the correct time zone. In this way we can have the same site
with WS applications with different peak hours, and even worst we can have
multiple overlapping peak hours during the same day to manage.

5.2 Scalability analysis

To evaluate the scalabity of our resource allocation algorithm, presented
in Chapter 3, we have considered a very lager set of randomly generated
instances according to the parameters and procedures described above. The
average values reported in this section have always been computed by con-
sidering 10 instances with the same size. The number of SaaS providers has

80

CHAPTER 5. EXPERIMENTAL RESULTS

been varied between 100 and 1000, the number of applications (evenly shared
among SaaSs) between 1000 and 10000.

The scalability of our approach, formulated in Section 3.4, has been eval-
uated performing tests on a Virtualbox virtual machine based on Ubuntu
12.04.1 LTS server (GNU/Linux 3.2.0-33-generic x86 64 kernel) running on
an Intel Xeon Nehalem dual socket quad-core system with 32 GB of RAM.

Table 5.2 reports the average computational time required by each SaaS to
run the algorithm presented in Chapter 3 for problem instances with different
sizes of SaaS S and applications A sets and in the worst case regarding the
cardinality of the IaaS set and the associativity sets, i.e., |I| = 10 and |Ij| = 3.

Instance size (|S|, |A|) Time (s)

(100, 1000) 2.09
(200, 2000) 3.72
(300, 3000) 5.84
(400, 4000) 7.49
(500, 5000) 9.55
(600, 6000) 12.57
(700, 7000) 15.37
(800, 8000) 17.88
(900, 9000) 20.21

(1000, 10000) 22.32

Table 5.2: Distributed algorithm for identifying GNE execution times.

Given the linear interpolation shown in Figure 5.7, and the coefficient of
determination R2 = 0.994 calculated in relation to the collected data, we can
state that the proposed method execution time per SaaS scale linearly with
respect to the size of the instance.

Usually in Cloud system resource allocation is performed periodically
on a hourly basis, [7], [19], [23]. Therefore we can affirm that the proposed
method is very efficient and can be used at run-time since it can solve problem
instances of maximum size in less than one minute.

5.3 Equilibria efficiency

The solution algorithm proposed has been evaluated for a variety of sys-
tem and workload configurations as stated before. This section is devoted to
present the metrics we used to understand the quality of our approach. Be-

81

5.3. EQUILIBRIA EFFICIENCY

R²	 =	 0,994	

0	

5	

10	

15	

20	

25	

100-‐1000	 200-‐2000	 300-‐3000	 400-‐4000	 500-‐5000	 600-‐6000	 700-‐7000	 800-‐8000	 900-‐9000	 1000-‐10000	

Ti
m
e	
[s
]	

Instance	 size	 [|S|	 -‐	 |A|]	

Figure 5.7: Distributed algorithm for identifying GNE scalability.

fore explaining which metrics we adopted, we explain how the social optimum
is achieved and how we used it as reference measurement.

5.3.1 Social optimum problem

The social optimum problem (see Appendix A.4) is equivalent to a prob-
lem with the potential as objective function subject to the same constraints
reformulated from (3.17) to (3.22) for the best-reply problem.

min
rki,dki,ski

∑
j∈S

∑
k∈Aj

∑
i∈Ij

ρi rki + δi dki + σMax
ji ski −

−T νk

[
µki −

1(
Rk −Dki

)] (rki + dki + ski)

s.t.

constraints (3.17) - (3.22).

82

CHAPTER 5. EXPERIMENTAL RESULTS

We denote with (r̃, d̃, s̃) the social optimum solutions and with (r, d, s)
the equilibrium solutions found using the best-reply method.

5.3.2 Price of Anarchy and Individual Worst Case

The Price of Anarchy (PoA) is a concept in game theory that measures
how the efficiency of a system degrades due to selfish behavior of its agents.
As said, usually the efficiency is some function of the outcomes. In our case
it is represented by the game potential Π. This indicator is defined as the
ratio of the objective function value of a Nash equilibrium of a game and
that of social optimal outcome. Note that this measure implicitly assumes
that players successfully reach some GNE.

In order to evaluate the solutions of the algorithms the efficiency has
been measured in terms of the PoA and of the Indivual Worst Case (IWC)
evaluated as:

PoA =
Π(r, d, s)

Π(r̃, d̃, s̃)
,

IWCj = max
j∈S

Θj(r, d, s)

Θj(r̃, d̃, s̃)
.

Therefore, both PoA and IWCj are a measure of the inefficiency due to
IaaSs and SaaSs selfish behavior with the respect to the scenario where the
social optimum is pursued. In particular, the IWC is a measure of the gap
between the social optimum and the Generalized Nash equilibria achieved in
the worst case by every single SaaS provider.

5.4 Alternative algorithms for resource allo-

cation

In this section we will present a couple of algorithmic methods able to
find a feasible solution for the service provisioning problem. The first one
wants to mimic the behavior of a typical IaaS provider, so we take the per-
spective of Amazon, the global market leader. Furthermore, in the second
sub-section we present another algorithm that can find a Generalized Nash
Equilibrium exploiting constraint relaxation, but unlike the algorithm pre-
sented in Chapter 3 it benefits from resource rescaling.

83

5.4. ALTERNATIVE ALGORITHMS FOR RESOURCE ALLOCATION

1400

1600

1800

2000

2200

2400

2600

0 1 2 3 4 5

P
ro

fi
t
($

)

Number of Opened Service Classes

Profit Curves

100% Capacity

80% Capacity

60% Capacity

50% Capacity

40% Capacity

Figure 5.8: Impact of system capacity and service classes on the optimal
profit, [59].

5.4.1 Heuristic

The heuristic presented in this section is intended to simulate the typical
policies, based on CPU utilization thresholds, which can be implemented
by SaaSs according to the required traffic and respecting the constraints
determined in SLA contracts. As in other approaches considered in literature
[98], [27], [108] we set the threshold at 60% CPU usage. Moreover results
obtained in [59] (Figure 5.8 and Figure 5.9) show that by using 60% of the
capacity the maximum ratio between profit and system usage is achieved.

On the contrary over the algorithm proposed in Chapter 3, that can be
run in a distributed manner, the heuristic needs to be performed at IaaS site
since it requires to know the whole set of decisions of the SaaS providers, in
particular the σMax

ji prices for on spot VMs, as will be explained below.

This procedure is divided into several parts, according to the type of VMs
available remaining in the IaaS infrastructure and its relative reliability. Each
single step of the algorithm is composed of three nested cycles in order to
satisfy every player of the game. The first concerns a loop for each individual
SaaS j ∈ S in the allocation problem, the second concerns the IaaS i ∈ Ij on
which every SaaS run its applications, and the innermost is performed once
for each application k ∈ Aj belonging to the relative SaaS. Lastly, when each
type of VM is assigned by the heuristic, the best reply function is performed
for each SaaS player in order to achieve an equilibrium.

84

CHAPTER 5. EXPERIMENTAL RESULTS

0

100

200

300

400

500

600

1 2 3 4

P
ro

fi
t
D

if
fe

re
n

c
e

 (
$

)

Number of Opened Service Classes

Profit Difference

40% Capacity

50% Capacity

60% Capacity

70% Capacity

80% Capacity

90% Capacity

Figure 5.9: The difference of optimal profit with varied number of opened
service classes, [59].

Initialization

The first step regards the initialization of the algorithm. The rationale
carried out by the SaaS divides homogeneously the incoming traffic Λk ac-
cording to the cardinality of Ij, that’s the number of IaaS on which the SaaS
j hosts its applications. With the same reasoning, the number of reserved
VMs rki is initialized according to the limit imposed by the Rji upperbound.

Finally, we initialize a variable called desired rki that represents the num-
ber of reserved VMs necessary at IaaS i for application k if we load at
U = 60% the CPUs.

Algorithm 5.4.1: Initialization

1 for j ∈ S do
2 for i ∈ Ij do
3 for k ∈ Aj do
4 xki = Λk

|Ij | ;

5 rki =
Rji

|Aj | ;

6 desired rki = xki
U ·µki

;

7 sum desired ri =
∑
k∈Ai

desidered rki ;

85

5.4. ALTERNATIVE ALGORITHMS FOR RESOURCE ALLOCATION

Reserved allocation

After the initialization obtained in the first step, the heuristic proceeds
with a redistribution of reserved rki VMs proportionally to the number of
real requests, respecting the relative upper bound Rji.

According to the Rji bound a new variable reallocated rki is initialized
as a fraction of the desired reserved VMs if the bound is violated, otherwise
the desideredki value is preserved.

Algorithm 5.4.2: Reserved allocation - part 1

8 for j ∈ S do
9 for i ∈ Ij do

10 for k ∈ Aj do
11 if (sum desired rki > Rji) then

12 reallocated rki =
desired rki·Rji

sum desired ri
;

13 else
14 reallocated rki = desired rki ;

The unassigned remaining VMs are stored in new sets of variables, called
residualki, one set for each application k running at IaaS provider i, and
reallocated as reserved VMs if still some applications is requiring them or
later assigned if necessary in the next steps of the algorithm as different kind
of VMs, both on spot or on demand.

Algorithm 5.4.3: Reserved allocation - part 2

15 for j ∈ S do
16 for i ∈ Ij do
17 for k ∈ Aj do
18 if (rki > reallocated rki) then
19 residualki = rki − reallocated rki ;
20 rki = reallocated rki ;

21 else
22 residualki = 0 ;

23 sum residualk =
∑
i∈Ij

residualki ;

24 if (rki < reallocated rki) then
25 if (residualki 6= 0) then

26 rki = rki + residualki
sum residualk

;

86

CHAPTER 5. EXPERIMENTAL RESULTS

On spot allocation

After the reserved VMs assignment the algorithm switches to the on spot
allocation, in order to try to meet throughput requirements while maintaining
the IaaS service center bounds, due to the limited number of total VMs Ni

available.

Algorithm 5.4.4: On spot allocation - part 1

27 for j ∈ S do
28 for i ∈ Ij do
29 for k ∈ Aj do
30 desired ski = max [0 , (desired rki − rki)] ;
31 needs Ni =

∑
k∈Ai

(desidered ski + rki) ;

32 sum σMax
j =

∑
i∈Si

σMax
ji ;

33 available ski = Ni −
∑
k∈Aj

rki ;

34 sum available ski =
∑
i∈Ij

available ski ;

The desiredki variable set is generated with the difference value between
the desired and the assigned reserved VMs. Accordingly to this variables,
needs Ni is calculated as the sum of already allocated reserved instances plus
the desired on spot. Following the reserved allocation, the available ski VMs
is calculated and used for on spot VMs rescaling.

Algorithm 5.4.5: On spot allocation - part 2

35 for j ∈ S do
36 for i ∈ Ij do
37 for k ∈ Aj do
38 if (needs Ni < Ni) then

39 ski = desired ski ·
σMax
ji

sum σMax
j

;

40 if (needs Ni > Ni) then

41 ski = ski · (available ski
sum available ski

) ;

Therefore, if the shared constraint (3.21) based on the Ni parameter is
not active, a redistribution proportionally to the bidding price of the SaaS is
performed. In this manner the IaaS reserve more resources for the customers
willing to pay more. Otherwise a ski rescaling is performed with the aim to

87

5.4. ALTERNATIVE ALGORITHMS FOR RESOURCE ALLOCATION

satisfy the IaaSs physical limits.

On demand allocation

The last step of the allocations concerns the most expensive resource, the
on demand VMs. If after reserved and on spot distribution the incoming
traffic Λk is still unsatisfied, an amount of on demand VMs is turned on in
order to satisfy at least the λk traffic requirements of the SLA contract.

The required number of VMs on demand is calculated as the difference
between the amount of VMs required for satisfy the λk traffic, found through
the performance parameters, and the on spot and the reserved already de-
ployed.

Algorithm 5.4.6: On demand allocation

42 for j ∈ S do
43 for i ∈ Ij do
44 for k ∈ Aj do
45 if Λk.slack > 0 then

46 dki =

[(
λk

µk− 1
Rk−Dki

)
− (ski + rki)

]
;

Heuristic evaluation

Algorithm 5.4.7: Best reply

1 for j ∈ S do
2 for i ∈ Ij do
3 for k ∈ Aj do
4 run Initialization (Algorithm 5.4.1);
5 run Reserved allocation (Algorithm 5.4.2, 5.4.3);
6 run On spot allocation (Algorithm 5.4.4, 5.4.5);
7 run On demand allocation (Algorithm 5.4.6);

8 solve SaaSj problem (3.3.4);

Finally, after solving each VM type step, the heuristic solves the best reply
solution starting from the obtained allocation. It finds a feasible generalized
Nash equilibrium that satisfies all the constraints required, useful to evaluate
the quality of the heuristic, through the metrics through metrics presented
in Section 5.3.

88

CHAPTER 5. EXPERIMENTAL RESULTS

5.4.2 Resource rescaling algorithm

The third algorithm we present is distributed and, as mentioned before,
exploits the shared constraints relaxation as the other distributed method
presented in Chapter 3. However in this algorithm, the reintroduction of
the shared constraints in the solution of new sub-problems is handled in a
different way as explained below.

Initialization

As for the algorithm presented in Chapter 3, being distributed, in the
initialization step the SaaS providers send to the IaaS their bid σMax

ji = ρi−ε.

Algorithm 5.4.8: Initialization

1 for i ∈ I do
2 for j ∈ Si do
3 σMax

ji = ρi − ε ;

Solution of relaxed problems

Each SaaS provider solves independently its individual minimization sub-
problem without the shared constraints hi(y) with the other SaaS providers
in the game: ∑

k∈Ai

(rki + dki + ski) ≤ Ni ∀ i ∈ Ij.

Algorithm 5.4.9: Solution of relaxed problems

4 for j ∈ S do
5 solve SaaSj problem without shared constraints hi(y) ;

6 for i ∈ I do
7 Mi =

∑
j∈Si,k∈Aj

(rki + dki + ski) ;

We then save Mi, that is the sum of the required VMs for every SaaS at
IaaS i without the shared constraint in the model, useful for the next steps.

Stopping criterion

This part is the core of the algorithm and checks if the number of assigned
VM by each IaaS i ∈ I is higher than the available at each service center

89

5.5. ALGORITHMS EFFICIENCY COMPARISON

and, if it occurs, a rescaling of the number of VMs is performed in order to
satisfy data centers bounds. The reiteration loop is based on the IC , which
initially contains all the elements of the I set.

Algorithm 5.4.10: Stopping criterion

8 set IC = I;
9 while IC = ∅ do

10 for j ∈ S do
11 for i ∈ Ij do
12 if Mi ≤ Ni then
13 remove i from IC ;
14 else
15 for k ∈ Aj do
16 rki = rki · Ni

Mi
;

17 dki = dki · Ni

Mi
;

18 ski = ski · Ni

Mi
;

19 solve SaaSj;

20 Mi =
∑

j∈Si,k∈Aj

(rki + dki + ski) ;

If the condition in line 12 is satisfied, the algorithm remove the i element
from the IC set. Otherwise every IaaS rescales the number of any kind of
VMs of a ratio Ni

Mi
for each application k ∈ Aj and call CPLEX in order to

solve the SaaS problem with the shared constraint. Therefore a recalculation
of the Mi parameter is done and the algorithm restarts its loop until the IC
set is empty, which is equivalent to the fact that there are no IaaSs with more
resources than what they can offer.

5.5 Algorithms efficiency comparison

Thanks to the criteria of evaluation presented in 5.3 we compare the
algorithms in terms of the efficiency of the reached equilibrium.

Performance parameters and time unit costs have not been changed with
respect to Table 5.1, but we focused on understanding what change in terms
of efficiency when the IaaS i offers a different φi upper bound percentage of
reserved instances compared with its total Ni resources, where

φi =

∑
j∈Si

Rji

Ni

.

90

CHAPTER 5. EXPERIMENTAL RESULTS

Given that the data regarding IaaSs trade policies are not public, three
values of φi have been considered in order to emulate a real Cloud environ-
ment: 10%, 30% and 50%.

With the purpose of comparing the algorithms in situations in which
the problems of individual SaaSs are not separable, which means in those
situations where the shared constraints are active, and consequently the PoA
and the IWC are greater than 1, we carried out several tests with |I| =
10, |S| = 100, |I| = 1000, and |Ij| = 3 for each SaaS.

For practical reasons hereafter we rename procedure presented in Section
5.4.1 as Heuristic, the resource rescaling algorithm detailed in Section 5.4.2
as Algorithm 1, while as Algorithm 2 the method described in Chapter 3.

The procedure we adopted to increase the difficulty of resource distri-
bution corresponds to decrease the Ni size of each IaaS, step by step, until
the allocation becomes infeasible. As shown in Figure 5.10, which depicts a
representative example of the percentage of VMs usage during a peak hour,
with an high value of Ni VMs available at each IaaS are assigned in a low per-
centage and consequently the shared constraints are not active. The problem
becomes easy to solve since there is no competition among players and each
single SaaS j problem can separated from the others and optimally solved.
Note that in these cases PoA will be equal to 1.

Otherwise, diminishing the Ni value, the service provisioning problem
becomes more complex, more stringent, shared constraints become active
and SaaS players start to compete for resources assignment. As verifiable
from Re-optimizations tables listed below, this situation induces a number
of re-optimizations greater than zero. Re-optimizations are performed when,
in both distributed algorithms, a first solution found with constraint relax-
ation assign a total number of VMs greater than what IaaSs can offer. Re-
optimization represents the number of violations obtained while the Stopping
criterion loops are performed (Algorithm 5.4.10 for Algorithm 1, Figure 3.3
for Algorithm 2). Therefore a rescaling in Algorithm 1 and bound changes
in the Algorithm 2 are perfomed, and re-optimizations started till a feasible
solution. On average Algorithm 2 computes more iterations, but gives, es-
pecially in hard cases close to infeasibility, better results both for PoA both
for the IWC in any φi analyzed.

With respect to the heuristic we can see from PoA and IWC tables that in
cases where SaaS problems are separable better results are achieved. In not
challenging environments the reached equilibrium is equivalent to the social
optimum, that correspond to better solution of 0.3% to 0.8% for the PoA
and from 2% to 5% for the IWC, depending on the φi used, with regards to
the Algorithm 1 and Algorithm 2.

The advantage of the heuristic compared to distributed algorithms is due

91

5.5. ALGORITHMS EFFICIENCY COMPARISON

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Pe
rc
en

ta
ge
	 o
f	 c
ap

ac
ity

	 u
se
d	
[%

]	

IaaS	 [i]	

High	 Ni	

Low	 Ni	

Figure 5.10: IaaS capacity usage on peak hours.

by the fact that is performed at the IaaS sites. This means that each SaaS
knows the σMax

ji prices and unlike the distributed algorithms where, being
executed at SaaS sites, the information concerning time unit cost offered by
IaaS i for on spot VMs instances to other SaaSs must be approximated.

However, the heuristic lose its advantage when the problem becomes
tighter and shared constraints start to be active and they make the solu-
tion process more complex. When the distributed algorithms start the re-
optimization due to competition among SaaSs for the resources, the heuristic
reaches a feasible solution but with unacceptable efficiency. The metrics show
that the reached equilibria, depending on the φi, are 363% worst than the so-
cial optima problem with regard to the PoA and average worsening of 477%
for the IWC of each SaaS.

Moreover in extreme environments with very low available Ni VMs per
IaaS (e.g., Low Ni case in Figure 5.10) independently from φi used, where
distributed algorithms require an high amount of re-optimizations but reach
a feasible and very efficient solutions, the heuristic comes to infeasible results,
baring out its limitations and showing benefits of using optimization models.

92

CHAPTER 5. EXPERIMENTAL RESULTS

PoA
Ni Heuristic Algorithm 1 Algorithm 2

95 1.00000 1.00343 1,00343
90 1.00051 1.00358 1.00358
85 1.00189 1.00366 1.00366
80 1.05331 1.00376 1.00376
75 1.36599 1.00382 1.00382
70 — 1.00430 1.00383
65 — 1.00461 1.00384
60 — 1.00484 1.00386

Table 5.3: Algorithms PoA comparison with φi = 0.1.

IWC (Average over SaaS providers)
Ni Heuristic Algorithm 1 Algorithm 2

95 1.00000 1.02614 1.02614
90 1.00081 1.02680 1.02680
85 1.03397 1.02717 1.02717
80 2.01429 1.02745 1.02745
75 4.77981 1.02756 1.02756
70 — 1.02862 1.02763
65 — 1.03149 1.02786
60 — 1.03271 1.02826

Table 5.4: Algorithms IWC comparison with φi = 0.1.

Re-optimizations
Ni Algorithm 1 Algorithm 2

95 0.0 0.0
90 0.0 0.3
85 0.8 1.3
80 2.0 2.5
75 4.3 6.5
70 5.5 8.3
65 6.8 29.0
60 14.2 49.3

Table 5.5: Algorithms re-optimization comparison with φi = 0.1.

93

5.5. ALGORITHMS EFFICIENCY COMPARISON

PoA
Ni Heuristic Algorithm 1 Algorithm 2

75 1.00000 1.00450 1.00450
70 1.00101 1.00405 1.00405
65 1.13108 1.00370 1.00370
60 — 1.00371 1.00357
55 — 1.00385 1.00307

Table 5.6: Algorithms PoA comparison with φi = 0.3.

IWC (Average over SaaS providers)
Ni Heuristic Algorithm 1 Algorithm 2

75 1.00000 1.03325 1.03325
70 1.02014 1.03129 1.03129
65 3.05352 1.02930 1.02930
60 — 1.03255 1.02815
55 — 1.02982 1.02715

Table 5.7: Algorithms IWC comparison with φi = 0.3.

Re-optimizations
Ni Algorithm 1 Algorithm 2

75 0.0 0.0
70 1.0 1.3
65 1.0 1.8
60 3.3 4.5
55 8.8 22.3

Table 5.8: Algorithms re-optimization comparison with φi = 0.3.

94

CHAPTER 5. EXPERIMENTAL RESULTS

PoA
Ni Heuristic Algorithm 1 Algorithm 2

70 1.00000 1.00888 1.00888
65 1.00066 1.00808 1.00808
60 2.05349 1.00721 1.00721
55 3.62520 1.00626 1.00626
50 — 1.00642 1.00568
45 — 1.00648 1.00396

Table 5.9: Algorithms PoA comparison with φi = 0.5.

IWC (Average over SaaS providers)
Ni Heuristic Algorithm 1 Algorithm 2

70 1.00000 1.04920 1.04920
65 1.01189 1.04661 1.04661
60 2.44790 1.04422 1.04422
55 4.33550 1.04090 1.04090
50 — 1.03801 1.03699
45 — 1.04689 1.03324

Table 5.10: Algorithms IWC comparison with φi = 0.5.

Re-optimizations
Ni Algorithm 1 Algorithm 2

70 0.0 0.0
65 0.0 0.2
60 1.0 1.0
55 1.0 1.7
50 4.3 7.5
45 15.8 86.5

Table 5.11: Algorithms re-optimization comparison with φi = 0.5.

95

5.6. MULTIPLE IAAS ANALYSIS

5.6 Multiple IaaS analysis

This section is devoted to the study of the advantages, disadvantages and
possible trade-offs that arise when a SaaS relies on more than one IaaS to
host its applications using the Algorithm 2, which equilibria are the best in
terms of efficiency as stated in the previous section.

Renting resources across multiple IaaS in our model means to change the
cardinality of Ij sets. This parameter is handled by the Data Generator that,
once properly configured, automatically create consistent .dat files for the
desired environment prototype.

Afterwards we performed analyses with SaaS providers able to buy re-
sources from one up to three IaaS at the same time and we compared them
in terms of equilibria efficiency and payoff function value, that means the
total price the SaaS has to pay to the IaaSs that host its applications.

In order to perform consistent analyses, the Rji maximum number of
reserved VMs that can be executed for the SaaS j at IaaS i has been prop-
erly configured in such a way that it can turn on an equal number of this
type of VMs independently from how many IaaSs it can use for hosting its
applications:∑

i∈Ij , |Ij |=1

Rji =
∑

i∈Ij , |Ij |=2

Rji =
∑

i∈Ij , |Ij |=3

Rji , ∀j ∈ S .

As in Section 5.5 we used the parameters of Table 5.1 and we focused on
the same three values for φi. In addition to results achieved on equilibria, we
also examined the average value of the payoff function (PF), which symbolize
in $ the fee paid from the SaaSs to their IaaSs.

Before displaying and analyzing the results obtained in the multi-IaaS
analysis, we take the point of view of a representative SaaS, with low or very
high traffic periods during the day, in order to better understand what means
to be able to rent resources from different providers.

If we take the perspective of a SaaS provider that has to satisfy the sum
of the WS applications traffic supported, exemplified in Figure 5.11, we can
found it in different situations.

In the first one, if its own IaaSs allow it, all the traffic can be satisfied only
renting reserved and proportionally to the ηj parameter on spot instances
(see Figure 5.12). In this way it can easily guarantee that all requests will
be served and the availability will be granted to its customers.

Otherwise, if the SaaS meets restrictions in resource allocations due to the
limited number of resources of the IaaS, or by other SaaS players asking for

96

CHAPTER 5. EXPERIMENTAL RESULTS

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	

Re
qu

es
ts
	 [r
eq

/s
]	

Hour	 of	 the	 day	

Figure 5.11: Traffic example of a single SaaS provider.

the same resources, or to the low Rji amount of reserved instances assigned
to its own VMs due to for example a low φi, it should acts a countermeasure.

In the case it profits by using more than one IaaS, it can starts VMs into
another IaaS provider until the traffic is satisfied. Differently, if it not lies
on multiple IaaSs or if its dedicated reserved are finished and on spot ratio
is reached, it must turn on the most expensive VMs, the on demand ones, as
shown in Figure 5.13.

Moreover, thanks to the fact that the SaaS player can benefit of multiple
IaaSs, it can compete for the cheapest resources on multiple sites, in order
to lower its costs. It can bid for lowest on spot resources, or start, depending
on the availability, reliable VMs in the lowest price zone.

Another important aspect relates to the reliability that a SaaS can ensure.
If it relies on a single IaaS, in case of downtime of the latter, it can not satisfy
the incoming traffic. Otherwise if it uses a Ij set with more than one provider,
it can move the traffic to its other suppliers avoiding interruption of services,
which corresponds in a greater QoS for the SaaS’s customers.

Clarified the advantages of the SaaS of being able to use software layers

97

5.6. MULTIPLE IAAS ANALYSIS

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	

N
um

be
r	 o

f	 V
M
s	

Hour	 of	 the	 day	

Reserved	

On	 demand	

On	 spot	

Total	 VMs	

Figure 5.12: SaaS allocation with unlimited resources.

to deploy WS applications on more than one IaaS, we can analyze results
where, with same incoming requests, we simulate SaaS relying to multiple
IaaSs and we compare it with the single IaaS case. As noted in Section 5.5,
in order to test the algorithm in different situations, we set the tests with
the purpose of having a situation near to infeasibility, then with a limited
number of Ni VMs at each IaaS in the peak hours. This corresponds to an
average usage of 60% of total available VMS in non-peak hours, and close to
100% in every IaaS during high traffic periods.

The first category of analyses regards Cloud environment characterized
by φi = 0.1, which means that each single IaaS offers a maximum of 10% of
its virtual machines as reserved. A summary of average results is reported
in Table 5.12, where the value of the PF is expressed in $.

Immediately appears clearly the advantage of having more IaaS to exploit
from the SaaS payoff function point of view. There is a saving of 39% with
the support of another IaaS compared to the single-IaaS deployment, and up
to 50% when the SaaS relies to three IaaS providers.

This great savings is due to the fact that the IaaS offering fewer reserved
VMs, in the single-IaaS case the SaaS is forced to turn on expensive on
demand VMs that quickly increase the fees, which in most cases is better

98

CHAPTER 5. EXPERIMENTAL RESULTS

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	

N
um

be
r	 o

f	 V
M
s	

Hour	 of	 the	 day	

Total	 VMs	

Reserved	

On	 demand	

On	 spot	

Figure 5.13: SaaS allocation with limited resources.

|Ij|
1 2 3

PoA 1.0000 1.0074 1.0161
IWC 1.0000 1.0412 1.0593
PF 45.5513 27.6885 22.7805

Table 5.12: Multi-IaaS analysis results with φi = 0.1.

than paying the penalties for not satisfied SLAs contracts.

However, as graphically show in Figure 5.14, there is a trade-off between
the average PF value and its average efficiency in the worst case reported
from the IWC, that is 5.93%. The same loss of quality is reported from the
PoA, that with φi = 0.1, is equal to a maximum loss of 1.61% compared to
the social optimum with |Ij| = 3.

For the sake of clarity in Figure 5.15 a set of hundred simulated payoff
functions is reported with the single-IaaS PF value normalized to 100% and
compared to Multi-IaaS results. Results shows that the gap with φi = 0.1 is
very significant in every SaaS provider, particularly between the single and
the multiple IaaS approach.

99

5.6. MULTIPLE IAAS ANALYSIS

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

0,97	

0,98	

0,99	

1,00	

1,01	

1,02	

1,03	

1,04	

1,05	

1,06	

1,07	

1	 2	 3	
|Ij|	

IWC	

PoA	

PF	

Figure 5.14: Multi-IaaS analysis results with φi = 0.1.

Therefore we performed a series of tests with φi = 0.3, collecting results
as summarized in Table 5.13.

|Ij|
1 2 3

PoA 1.0000 1.0078 1.0127
IWC 1.0000 1.0521 1.0629
PF 33.0845 25.4269 22.8917

Table 5.13: Multi-IaaS analysis results with φi = 0.3.

As verifiable from Figure 5.16 and Figure 5.17 there is still an average
23% savings deploying application on two and 30% on three IaaSs. The gap
between the single and multiple IaaS decreases thanks to an higher amount
of reserved VMs on each IaaS provider, and consequently a lower quantity of
on demand instances is required. This fact is reflected in a large lowering of
the PF in the case of single IaaS, a lower decrease in the case of |Ij| = 2, and
a slight increase in the average price to be paid in the case of three IaaS, due
to increased competition for the resources present in every single provider.

Finally, we tested the Cloud environments with φi = 0.5, that means half
of the VMs available at each IaaS providers may be of reserved type.

100

CHAPTER 5. EXPERIMENTAL RESULTS

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 3	 5	 7	 9	 11
	

13
	

15
	

17
	

19
	

21
	

23
	

25
	

27
	

29
	

31
	

33
	

35
	

37
	

39
	

41
	

43
	

45
	

47
	

49
	

51
	

53
	

55
	

57
	

59
	

61
	

63
	

65
	

67
	

69
	

71
	

73
	

75
	

77
	

79
	

81
	

83
	

85
	

87
	

89
	

91
	

93
	

95
	

97
	

99
	

SaaS	 [j]	

1	

2	

3	

Figure 5.15: Multi-IaaS payoff function comparison with φi = 0.1.

As the reader may imagine at this point, the gap between single and
multiple Cloud deployment is even decreased. However, the results (Table
5.14) show that there is still significant advantages, with an average savings
starting from 16% up to 22%.

|Ij|
1 2 3

PoA 1.0000 1.0081 1.0119
IWC 1.0000 1.0534 1.0598
PF 29.5973 24.8274 22.9073

Table 5.14: Multi-IaaS analysis results with φi = 0.5.

Moreover the equilibria efficiency is improved, as summarized in Figure
5.18. There is a drop to 1.19% for the PoA and 5.98% for the IWC. This
shows the effectiveness of our approach in situations where competition for
the VMs is strong and the allocation becomes even more complex given the
increase of SaaS players competing for the same resources.

With such high value of φi occur cases (see Figure 5.19) where three
providers deployment is more expensive than hosting applications on two
IaaSs. This happens with customers willing to buy on spot VMs that, how-
ever, in the case in which they have already been sold and being available in

101

5.6. MULTIPLE IAAS ANALYSIS

0	

5	

10	

15	

20	

25	

30	

35	

0,96	

0,97	

0,98	

0,99	

1,00	

1,01	

1,02	

1,03	

1,04	

1,05	

1,06	

1,07	

1	 2	 3	
|Ij|	

IWC	

PoA	

PF	

Figure 5.16: Multi-IaaS analysis results with φi = 0.3.

smaller quantities due to the increased number of reserved, SaaS providers
are obliged to start on demand VMs, raising consequently their fees.

Given the results obtained, it is clear that exploiting more than one IaaS
providers simultaneously is beneficial for the SaaS. In terms of profits SaaSs
will have savings ranging from a minimum of 16% up to 50%. Regarding the
equilibrium achieved in the worst case the inefficiency is equal to less than
2% for the social problem and up 6% for the single player.

Finally, it is important to point out the considerable advantages concern-
ing the reliability that the SaaS provider can guarantee to its customers,
which increases with the number of used IaaSs.

102

CHAPTER 5. EXPERIMENTAL RESULTS

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 3	 5	 7	 9	 11
	

13
	

15
	

17
	

19
	

21
	

23
	

25
	

27
	

29
	

31
	

33
	

35
	

37
	

39
	

41
	

43
	

45
	

47
	

49
	

51
	

53
	

55
	

57
	

59
	

61
	

63
	

65
	

67
	

69
	

71
	

73
	

75
	

77
	

79
	

81
	

83
	

85
	

87
	

89
	

91
	

93
	

95
	

97
	

99
	

SaaS	 [j]	

1	

2	

3	

Figure 5.17: Multi-IaaS payoff function comparison with φi = 0.3.

0	

5	

10	

15	

20	

25	

30	

35	

0,97	

0,98	

0,99	

1,00	

1,01	

1,02	

1,03	

1,04	

1,05	

1,06	

1,07	

1	 2	 3	
|Ij|	

IWC	

PoA	

PF	

Figure 5.18: Multi-IaaS analysis results with φi = 0.5.

103

5.6. MULTIPLE IAAS ANALYSIS

-‐20%	

0%	

20%	

40%	

60%	

80%	

100%	

1	 4	 7	 10	 13	 16	 19	 22	 25	 28	 31	 34	 37	 40	 43	 46	 49	 52	 55	 58	 61	 64	 67	 70	 73	 76	 79	 82	 85	 88	 91	 94	 97	 100	

SaaS	 [j]	

1	

2	

3	

Figure 5.19: Multi-IaaS payoff function comparison with φi = 0.5.

104

Chapter 6

Conclusions

As Cloud-based services become more numerous and dynamic, resource
provisioning becomes more and more challenging, especially when decisions
can be affected by the action of others, not only by own actions, hence
requiring game-theory approaches. Indeed, in any time instant resources have
to be allocated to handle effectively workload fluctuations, while providing
quality of service guarantees to the end users.

The overall goal we addressed in our thesis is the minimization of the
costs associated with the allocated virtual machine instances in multiple
IaaSs, while guaranteeing QoS constraints. To achieve this purpose we have
proposed a game-theoretic approach for the run-time management of IaaSs
provider capacities among multiple competing SaaSs. The cost model con-
sists of objective functions which include revenues and penalties incurred
depending on the achieved performance level and infrastructural costs asso-
ciated with IaaSs resources. Therefore a distributed algorithm for identifying
Generalized Nash Equilibria have been presented and its termination in a fi-
nite number of iterations has been demonstrated.

Thanks the AMPL language and the CPLEX solver, the effectiveness
of our approach have been assessed by performing a wide set of analyses
under multiple workload conditions. Realistic workloads created from a large
website statistics and performance parameters estimated on an industrial
benchmarking deployed in the Cloud have been used.

A number of different scenario of interest have been considered. Systems
up to thousands of applications can be managed very efficiently in a fully
distributed manner. Our algorithm found efficient GNE, for a hourly basis
resource allocation, in less than a minute, proving to be perfectly suitable
for run-time provisioning.

A comparison with utilization based state-of-the-art techniques and a
rescaling algorithm shows that our solution outperform alternative methods

105

proving better results in terms of equilibrium efficiency both as regards the
PoA both the IWC of each SaaS. In addition, our algorithm, achieve an effi-
cient GNE under heavy workload conditions while thresholds based heuristic
finds infeasible results due to the inability to manage SaaSs competition.

Finally analyses showed clear SaaS benefits while exploiting multiple IaaS
deployment of applications and redistribution of traffic. SaaSs can have an
average savings up to 50% compared to single IaaS architectures. The equi-
libria achieved are close to Cloud optimum, with inefficiency less than 2%
for the social problem and of 6% for individual player in the worst cases.

Future work will extend the proposed solutions to consider multiple time-
scales for performing resource allocation from few minutes to one hour. Ad-
ditionally short-term solutions will be based on receding horizon techniques.

106

Appendices

107

Appendix A

Game theory and generalized
Nash equilibrium problem

A.1 Game theory in the Cloud Computing

Game theory has found its applications in numerous fields such as Eco-
nomics, Social Science, Political Science, Evolutionary Biology. Over the last
years this branch of applied mathematics has found its applications also in
Computer Science. Because of the success of the Internet and the revolution
in Information Technology, the nature of computing has changed making it
possible to commoditize the components such as network, computing, storage
and software. In the new paradigm, there are multiple entities (hardware,
software agents, protocols etc.) that work on behalf of different autonomous
bodies (such as a user, a business etc.) and provide services to other similar
entities. Many geographically distributed autonomous entities interact with
each other through the Internet and provide various services working for their
respective owners to achieve their individual goals (maximize their individual
payoffs), as opposed to obtaining a system optima (that is socially desirable).
Therefore, it is important to study some computer science problems under a
game-theoretic model.

As for Cloud Computing, its social, economic and strategic structure
make it impossible to apply classical optimization approach in order to model
its mathematical problems. Indeed, some of them, like the service provision-
ing problem, are perfectly suitable to Noncooperative Game Theory tools.

In this section we present the basic concepts of Game Theory and pro-
vide its application in different domains. In particular, we define what is an
equilibrium and explain the different notions of it. Finally, we illustrate the
theoretic results necessary to study the problem proposed in this work.

109

A.2. DEFINITION OF GAME

A.2 Definition of Game

Non-cooperative Game Theory is the study of problems of conflict and
cooperation among multiple independent decision-makers, which means the
study of the ways in which strategic interactions among economic agents pro-
duce outcomes with respect to the preferences (or utilities) of those agents,
where the outcomes in question might have been intended by none of the
agents. Each actor pursues his/her own interests working independently and
without assuming anything about what other players are doing. Moreover,
he/she has to follow certain rules while making these moves and each one of
them is supposed to behave rationally.
In the language of Game Theory rationality implies that every player is
motivated by maximizing his own payoff irrespective to what other players
are doing.

More formally:

Definition 1. A non-cooperative game Γ in strategic form is a tuple{
N, {Xi}i∈N , {Θi}i∈N

}
that consists of:

• a finite set of players N ≡ {1, 2, ..., n}, where n ∈ N;

• a set of strategies Xi for every player i ∈ N , which is also called feasible
set for player i;

• cost functions, Θi : X1 ×X2 × · · · ×Xn → R for each player i ∈ N .

Moreover, we indicate with X:

X ≡ X1 ×X2 × · · · ×Xn ⊆ RM (A.1)

the common strategy set, called feasible set or strategy space of game Γ; every
point x ∈ X represents the feasible strategies of the game. Note that X is
supposed to be nonempty, closed and convex.

The interpretation of the above definition is the following: every player
i chooses simultaneously his variable xi ∈ Xi producing a feasible solution
x = (x1, x2, ..., xn). Then, every player has to pay a cost that is Θi(x).

With this context in mind, the challenge of a game is to understand
when one choice is better than another for a particular player. The best
strategy for a player in a game may be pure or mixed; the first when players

110

APPENDIX A. GAME THEORY AND GENERALIZED NASH
EQUILIBRIUM PROBLEM

deterministically choose their moves, the latter when they randomly choose
one out of many different strategies. Besides the types of interactions between
players, a game can be classified according to the nature of the feasible sets Xi

or of the functions Θi. For example, as we said, a game is non-cooperative if
each player pursues his/her own interests working independently and without
assuming anything about what other players are doing. In case the elements
of the feasible sets Xi are functions of time, we are dealing with a dynamic
game. A non dynamic game is static. Furthermore, if all the feasible sets Xi

of a game Γ are finite sets, we say that Γ is a finite game.

A.3 Solution concepts: Nash Equilibrium and

Generalized Nash Equilibrium

Given a game Γ, which strategies will the rational players adopt? In other
words, which variable xi ∈ Xi will every player choose? We will call such a
point a solution of the game. Intuitively, a player pursue the case in which
his cost is the lowest possible. Since the payoff function Θi depends even on
the strategies of the other players which in turn are minimizing their own
costs, a conflict situation is created and it is not easy to characterize the
best choice for every player. In other words, when rational players correctly
forecast the strategies of their opponents they are not merely playing best
responses to their beliefs about their opponents’ play; they are playing best
responses to the actual play of their opponents. Indeed, the notion of a
solution is more tenuous in game theory than in other fields; it concerns with
optimality, feasibility and equilibria.

In the fifties a solution concept - due to John Forbes Nash, see [71] -
emerged as the most appropriate and effective. When all players correctly
forecast their opponents’ strategies, and play best responses to these fore-
casts, the resulting strategy profile is a Nash equilibrium. We will firstly
introduce the Nash solution concept and then the generalizations of it.

Since we have to analyze the behavior of player i for a given and fixed
choice of all the other players variables, let us denote with x−i the set of all
the players variables, except the i-nth one:

x−i ≡ (x1, x2, ..., xi−1, xi+1, ..., xn)

so we can write x = (xi,x−i).

Definition 2. A vector x ∈ X is called a Nash equilibrium (NE) for the
game if:

111

A.3. SOLUTION CONCEPTS: NASH EQUILIBRIUM AND
GENERALIZED NASH EQUILIBRIUM

Θi(x) ≤ Θi(xi,x−i), ∀xi ∈ Xi

holds for all i ∈ N .

Equivalently, x is a Nash equilibrium if and only if xi solves the mini-
mization problem:

min
xi

Θi (xi,x−i) , s.t. xi ∈ Xi

for all i ∈ N , i.e., if and only if no player can improve his objective function
by unilaterally changing his strategy.

We note that the above definition neither implies that a strategic game
has a Nash equilibrium, nor that it has only one. Indeed, some games have
a single Nash equilibrium, some possess no Nash equilibria and others have
many Nash equilibria.

The solution concept proposed by Nash implies that every player is play-
ing a best response to the strategy choices of his/her opponents. Neverthe-
less, in some conflict situations (for example the one describing the behavior
of SaaSs and IaaSs studied in this work, see Chapter 3) the strategy set of
one player depends on the choices of the others. In particular, in a Nash
Equilibrium Problem (NEP), the feasible set Xi of the i-nth player depends
only on his own variables. Differently, we define a Generalized Nash Equilib-
rium Problem (GNEP) when not only the objective functions of each player
depend upon the strategies chosen by all the other players, but also each
player’s feasible set depends on the rival players’ strategies, meaning that
the constraints of the i-nth player may depend on all the decision variables
of the game.

It is important to note that, in both cases, the objective functions Θi may
depend on the whole set of variables.

Definition 3. Assume that x = (x1, x2, ..., xn) ∈ X is a feasible point for a
given game Γ. The vector x is called a Generalized Nash Equilibrium (GNE)
for the game if:

Θi(x) ≤ Θi(xi,x−i), ∀xi ∈ Xi (x−i) (A.2)

holds for all i ∈ N .

Equivalently, x is a Nash equilibrium if and only if xi solves the optimiza-
tion problem:

min
xi

Θi (xi,x−i) , s.t. xi ∈ Xi (x−i)

112

APPENDIX A. GAME THEORY AND GENERALIZED NASH
EQUILIBRIUM PROBLEM

for all i ∈ N , i.e., if no player can decrease his objective function by changing
unilaterally his strategy xi to any other feasible point.

Throughout, we assume that the GNEP satisfies the following assump-
tions:

• The objective functions Θi are continuous;

• The objective functions Θi (·,x−i) are convex as a mapping of xi alone;

• The strategy set Xi (x−i) is defined explicitly by inequation constraints:

Xi (x−i) = {xi ∈ Rni : gi (xi,x−i) ≤ 0} . (A.3)

At the current state of the art a GNEP is much more difficult to solve
than a standard NEP and only in few specific cases it is tractable. This is
the reason why it is possible to define another class of generalized problems
that are very common in practice: the Jointly-Convex GNEP (JC-GNEP). In
literature, this type of problems is even called NEP with Shared Constraints.

Definition 4. Assume that for every player i and every x−i, the objec-
tive function Θi (·,x−i) is convex and the set Xi (x−i) is closed and con-
vex. A Jointly-Convex Generalized Nash Equilibrium Problem (JC-GNEP),
or GNEP with Shared Constraints, is defined as the following optimization
problem:

min
xi

Θi (xi,x−i) , s.t. xi ∈ Xi (x−i) (A.4)

where
Xi (x−i) = {xi ∈ Rni : (xi,x−i) ∈ X} (A.5)

for some closed convex set X ⊆ RM .

Again, when the sets Xi (x−i) are defined explicitly by a system of in-
equalities, then it is easy to check that (A.5) is equivalent to the requirement
that g1 = g2 = ... = gN = g and that g (x) be componentwise convex with
respect to all variables x. Furthermore, in this case, it obviously holds that:

X =
{
x ∈ RM : g (x) ≤ 0

}
.

More generally, a JC-GNEP may be defined as:

min
xi

Θi (xi,x−i) , (A.6)

s.t. xi ∈ Xi (x−i) = {xi ∈ Rni : gi (xi) ≤ 0} (A.7)

h (x) = h (xi,x−i) ≤ 0 (A.8)

113

A.4. EQUILIBRIA EXISTENCE AND POTENTIAL GAMES

where the constraints gi of player i depend only on his own variables, while
constraints common to all players, h, depend on the variables set. Some-
times the first constraints are called private, the latters shared or common
constraints. Once again, we consider that the assumptions made for GNEP
are still valid, adding the assumption that hi (x) are convex in respect to all
variables.

A summary of the different classes of Nash problems and the relation
among them is given in Figure A.1.

Figure A.1: Families of Generalized Nash Equilibrium Problems.

A.4 Equilibria existence and potential games

The Cloud Computing problem considered in this work can be studied
through a game-theory methodology.

The aim of this section is to supply some basic results of the equilibria
existence for the GNEP. In particular we focus on the definition of potential
function for game Γ and illustrate what is a potential game.

Existence of solution for problem (A.2) has been the main focus of early
research in GNEPs. The Debreu paper, [28], where the GNEP was formally
introduced, also gives the first existence theorem. This existence result was
based on fixed-point arguments, and this turned out to be the main proof
tool used in the literature. The main existence result is probably the one
established in Arrow and Debreu, [20]. We report below a slightly simplified
version given by Ichiishi [51].

114

APPENDIX A. GAME THEORY AND GENERALIZED NASH
EQUILIBRIUM PROBLEM

Theorem A.4.1. Given a GNEP (A.2), assume that Θi ∈ C0 (Rni) for all
i ∈ N and suppose that:

a) there exists n nonempty, convex and compact sets Ki ⊂ Rni such that for
every x ∈ RN with xi ∈ Ki for every i, Xi (x−i) is nonempty, closed and
convex, Xi (x−i) ⊆ Ki, and Xi, as a point-to-set map, is both upper and
lower semicontinuos;

b) for every player i, the functions Θi (·,x−i) is quasi-convex on Xi (x−i).

Then a generalized Nash equilibrium exists.

Note that when the sets Xi are defined by inequalities constraints as in (A.3),
the lower and upper semicontinuity requirements translate into reasonably
mild conditions on the functions gi.

For the most of the applied problems studied with a game-theory ap-
proach, the assumptions of the above theorem are too strong to be satisfied.
Hence, to guarantee the existence of a solution, alternative results have to
be considered. Some researches focus on the analysis of the assumptions,
their relaxation or the formulation of weaker conditions. For example, the
relaxation of the assumptions in the previous theorem has been the subject
of an intense study [22], [70], [77], [89]. However, we have not discussed it in
this work since it is not of interest for the problem considered.

Another way of overcoming the equilibria existence problem for applica-
tions where assumptions of Theorem A.4.1 are not guaranteed, is to identify
potential functions that allow to formulate the so called potential game [69],
[93], [33]. The first formal definition of potential games was given by Mon-
derer and Shapley: in their work [69] they illustrate and discuss several no-
tions of potential functions for games in strategic form, characterizing games
that have a potential function and presenting a variety of applications.

In the remainder of this section we will provide an illustration of the
main concepts of potential games. With the presented theory and tools we
have been able to analyze the problem under study and provide an equilibria
existence result (see Section 3.4).

A game is said to be a potential game if the incentive of all players to
change their strategy can be expressed using a single function called the po-
tential function. The potential function is a useful tool to analyze equilibrium
properties of games, since the incentives of all players are mapped into one
function, and the set of Nash equilibria can be found by locating optima of
the potential function.

Definition 5. A strategic game Γ =
{
N, {Xi}i∈N , {Θi}i∈N

}
is:

115

A.4. EQUILIBRIA EXISTENCE AND POTENTIAL GAMES

• an exact potential game if there exists a function Π : X → R such that
for all x−i ∈ X−i and for all yi, zi ∈ Xi:

Θi (yi, x−i)−Θi (zi, x−i) = Π (yi, x−i)−Π (zi, x−i) , ∀i ∈ N ; (A.9)

• an ordinal potential game if there exists a function Π : X → R such
that for all x−i ∈ X−i and for all yi, zi ∈ Xi:

Θi (yi, x−i)−Θi (zi, x−i) > 0 ⇔ Π (yi, x−i)−Π (zi, x−i) > 0, ∀i ∈ N ;
(A.10)

Such a function Π is called an (exact, ordinal or generalized) potential
function of the game Γ.

Clearly, an exact potential game is an ordinal potential game. In exact
potential games the difference in the value of the potential equal the difference
in the payoff to the deviating player. In ordinal potential games only the signs
of the differences match.

The potential minimizer of an ordinal potential game Γ is the set of strat-
egy combinations x ∈ X for which some potential Π achieves a maximum.
The following proposition follows immediately from these definitions.

Property A.4.2. Let Γ =
{
N, {Xi}i∈N , {Θi}i∈N

}
be an ordinal potential

game and Π a potential for Γ. If x ∈ X is a Nash equilibrium of ΓPot ={
N, {Xi}i∈N , Π

}
, i.e., of the game with all payoff functions replaced by Π,

then x is a Nash equilibrium of Γ. In particular, every ordinal potential game
has at least one Nash equilibrium, since the potential minimizer is nonempty.

We note that in case Γ is an exact or ordinal potential game and x is a
Nash equilibrium of Γ, then x is also a Nash equilibrium of ΓPot.

The minimizers of Π on the set X are called social equilibria of the game.
It is clear from the above definitions that each social equilibrium is a special
NE, indeed no one player can improve its payoff by unilaterally deviating
his strategy. In other words, social equilibria represent the NE which are
optimal from a social point of view.

Roughly speaking a generalized potential game is a GNEP where the play-
ers are (unknowingly) minimizing the same function and where the feasible
set of each player is the “section” of a larger nonempty set in the product
space RM. Hence, the two fundamental ingredients to evaluate if the game
we are dealing with is a generalized potential game are:

• a common feasible set X;

116

APPENDIX A. GAME THEORY AND GENERALIZED NASH
EQUILIBRIUM PROBLEM

• a potential function Π that reflects the changes in the players’ objective
functions.

In [36] the concept of potential game has been extended for GNEP with
joint constraints. A generalization of the results of the classical definition
of potential game is given considering the elimination of the assumptions of
a Cartesian product structure for X and of the usual convexity either on
the set X or on the objective functions Θi (·, xi). Moreover, the author il-
lustrates how to identify a potential function in the peculiar case in which
the objective functions do not depend on the other players’ variables: the
potential function is simply given by the sum of the objective functions of
all players (for an example of applications see also [17]); another common
case considered is when Θi (x) = c (x) + di (xi), that is when the objective
functions have a common term c which is the same for all players plus an

additional cost related only to xi: then Π (x) = c (x) +
N∑
i=1

di (xi). Despite

the clear analysis of such interesting cases, the authors just focus their at-
tention on problems where the feasible set X is defined by some inequalities
constraints:

X =
{
x ∈ RN : g (x) ≤ 0

}
,

pursuing a discussion on potential game where the constraints g (x) ≤ 0 are
shared by all the players.

A.5 Wardrop equilibrium

Another important concept of equilibrium was developed by the English
transport analyst John Glen Wardrop [96].

In studies about traffic assignment, network equilibrium models are com-
monly used for the prediction of traffic patterns in transportation and telecom-
munication networks that are subject to congestion. The idea of traffic equi-
librium is related to the concept of Nash equilibrium but the analysis results
more difficult since in transportation networks there are many players to
consider.

This alternative concept assumes that players (travelers or packets) select
a route that they perceive as being the shortest under the prevailing traffic
conditions, minimizing the time or cost incurred in their traversal. Since,
the situation resulting from these individual decisions is one in which drivers
cannot reduce their journey times by unilaterally choosing another route, the
resulting traffic pattern represents an equilibrium, known as the Wardrop (or
user) equilibrium.

117

A.5. WARDROP EQUILIBRIUM

Wardrop stated two principles that formalize this notion of equilibrium
and the alternative postulate of the minimization of the total travel costs.
His first principle reads:

Property A.5.1 (Wardrop first principle). The journey times on all the
routes actually used are equal, and less than those which would be experienced
by a single vehicle on any unused route.

Specifically, a user-optimized equilibrium is reached when no user may
lower his transportation cost through unilateral action.

Property A.5.2 (Wardrop second principle). At equilibrium the average
journey time is minimum.

This implies that each user behaves cooperatively in choosing his own
route to ensure the most efficient use of the whole system.

Wardrop’s first principle of route choice became accepted as a sound and
simple behavioral principle to describe the spreading of trips over alternate
routes due to congested conditions. Its first mathematical formalization was
introduced in the context of transportation networks by Beckmann, McGuire,
and Winsten, in 1956. Transportation planners have been using Wardrop
equilibrium models to predict computers decisions in real life networks.

118

Bibliography

[1] 2011 International Conference on Distributed Computing Systems,
ICDCS 2011, Minneapolis, Minnesota, USA, June 20-24, 2011. IEEE
Computer Society, 2011.

[2] INFOCOM 2011. 30th IEEE International Conference on Computer
Communications, Joint Conference of the IEEE Computer and Com-
munications Societies, 10-15 April 2011, Shanghai, China. IEEE, 2011.

[3] 2012 IEEE 32nd International Conference on Distributed Computing
Systems, Macau, China, June 18-21, 2012. IEEE, 2012.

[4] 26th IEEE International Parallel and Distributed Processing Sympo-
sium Workshops & PhD Forum, IPDPS 2012, Shanghai, China, May
21-25, 2012. IEEE Computer Society, 2012.

[5] Vineet Abhishek, Ian A. Kash, and Peter Key. Fixed and market
pricing for cloud services. CoRR, abs/1201.5621, 2012.

[6] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review.

[7] Jussara Almeida, Virǵılio Almeida, Danilo Ardagna, ı́talo Cunha,
Chiara Francalanci, and Marco Trubian. Joint admission control and
resource allocation in virtualized servers. J. Parallel Distrib. Comput.,
70(4):344–362, April 2010.

[8] Eitan Altman, Thomas Boulogne, Rachid El Azouzi, Tania Jiménez,
and Laura Wynter. A survey on networking games in telecommunica-
tions. Computers & OR, 33:286–311, 2006.

[9] Amazon Inc. Amazon Elastic Cloud Computing.
http://aws.amazon.com/ec2/.

119

BIBLIOGRAPHY

[10] Amazon Inc. Amazon Web Services.
http://aws.amazon.com/.

[11] AMPL. Ampl modeling language for mathematical programming.
http://www.ampl.com/.

[12] Apache. Apache JMeter. http://jmeter.apache.org/.

[13] D. Ardagna, E. di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny,
F. D”Andria, G. Casale, P. Matthews, C.-S. Nechifor, D. Petcu, A. Ger-
icke, and C. Sheridan. Modaclouds: A model-driven approach for the
design and execution of applications on multiple clouds. In Modeling in
Software Engineering (MISE), 2012 ICSE Workshop on, pages 50–56,
2012.

[14] Danilo Ardagna, Sara Casolari, Michele Colajanni, and Barbara Pan-
icucci. Dual time-scale distributed capacity allocation and load redirect
algorithms for cloud systems. J. Parallel Distrib. Comput., 72(6):796–
808, 2012.

[15] Danilo Ardagna, Sara Casolari, and Barbara Panicucci. Flexible dis-
tributed capacity allocation and load redirect algorithms for cloud sys-
tems. In Liu and Parashar [58], pages 163–170.

[16] Danilo Ardagna, Barbara Panicucci, and Mauro Passacantando. A
game theoretic formulation of the service provisioning problem in cloud
systems. In Srinivasan et al. [85], pages 177–186.

[17] Danilo Ardagna, Barbara Panicucci, and Mauro Passacantando. Gen-
eralized nash equilibria for the service provisioning problem in cloud
systems. Services Computing, IEEE Transactions on, PP(99):1, 2012.

[18] Danilo Ardagna, Barbara Panicucci, Marco Trubian, and Li Zhang.
Energy-aware autonomic resource allocation in multitier virtualized en-
vironments. IEEE T. Services Computing, 5(1):2–19, 2012.

[19] Michael Armbrust, Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D. Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee,
David A. Patterson, Ariel Rabkin, and Matei” Zaharia. Above the
clouds: A berkeley view of cloud computing. 2009.

[20] Kenneth Arrow and Gerard Debreu. Existence of an equilibrium for a
competitive economy. Econometrica, 22(3):265–290, 1954.

120

BIBLIOGRAPHY

[21] Jeff Barr. Host Your Web Site In The Cloud: Amazon Web Services
Made Easy Amazon EC2 Made Easy. Sitepoint, 1st edition, 2010.

[22] Michael R Baye, Guoqiang Tian, and Jianxin Zhou. Characteriza-
tions of the existence of equilibria in games with discontinuous and
non-quasiconcave payoffs. Review of Economic Studies, 60(4):935–48,
October 1993.

[23] R. Birke, L.Y. Chen, and E. Smirni. Data centers in the cloud: A large
scale performance study. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pages 336–343, June.

[24] Mathias Björkqvist, Lydia Y. Chen, and Walter Binder. Opportunistic
service provisioning in the cloud. In Chang [26], pages 237–244.

[25] Marco Caldirola. Tecniche di resource allocation per sistemi virtualiz-
zati di larga scala. Master’s thesis, Politecnico di Milano, 2010.

[26] Rong Chang, editor. 2012 IEEE Fifth International Conference on
Cloud Computing, Honolulu, HI, USA, June 24-29, 2012. IEEE, 2012.

[27] L. Cherkasova and P. Phaal. Session-based admission control: a mech-
anism for peak load management of commercial web sites. Computers,
IEEE Transactions on, 51(6):669–685, Jun.

[28] Gerard Debreu. A social equilibrium existence theorem. Nat. Acad.
Science, 38:886–893, 1952.

[29] Brian Dougherty, Jules White, and Douglas C. Schmidt. Model-driven
auto-scaling of green cloud computing infrastructure. Future Genera-
tion Comp. Syst., 28(2):371–378, 2012.

[30] Parijat Dube, Zhen Liu, Laura Wynter, and Cathy H. Xia. Competitive
equilibrium in e-commerce: Pricing and outsourcing. Computers & OR,
34(12):3541–3559, 2007.

[31] Parijat Dube, Corinne Touati, and Laura Wynter. Capacity planning,
quality of service and price wars. SIGMETRICS Performance Evalua-
tion Review, 35(3):31–33, 2007.

[32] Sourav Dutta, Sankalp Gera, Akshat Verma, and Balaji Viswanathan.
Smartscale: Automatic application scaling in enterprise clouds. In
Chang [26], pages 221–228.

121

BIBLIOGRAPHY

[33] Yu.M. Ermoliev and S.D. Flaam. Repeated play of potential games.
Cybernetics and Systems Analysis, 38:355–367, 2002.

[34] Francisco Facchinei, Andreas Fischer, and Veronica Piccialli. General-
ized nash equilibrium problems and newton methods. Math. Program.,
117(1-2):163–194, 2009.

[35] Francisco Facchinei and Christian Kanzow. Generalized nash equilib-
rium problems. Annals OR, 175(1):177–211, 2010.

[36] Francisco Facchinei, Veronica Piccialli, and Marco Sciandrone. Decom-
position algorithms for generalized potential games. Computational
Optimization and Applications, 50:237–262, 2011.

[37] Yuan Feng, Baochun Li, and Bo Li. Price competition in an oligopoly
cloud market. 2011.

[38] Flexyscale. http://www.flexiscale.com/.

[39] GoGrid. http://www.gogrid.com/.

[40] Google Inc. http://www.google.com/about/company/.

[41] Google Inc. Google App Engine.
https://developers.google.com/appengine/.

[42] Google Inc. Google Apps for Business.
http://www.google.com/enterprise/apps/business/.

[43] Google Inc. Google Compute Engine.
https://cloud.google.com/products/compute-engine.

[44] Hadi Goudarzi and Massoud Pedram. Multi-dimensional sla-based re-
source allocation for multi-tier cloud computing systems. In Liu and
Parashar [58], pages 324–331.

[45] Albert G. Greenberg and Kazem Sohraby, editors. Proceedings of the
IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30, 2012. IEEE,
2012.

[46] Makhlouf Hadji and Djamal Zeghlache. Minimum cost maximum flow
algorithm for dynamic resource allocation in clouds. In Chang [26],
pages 876–882.

122

BIBLIOGRAPHY

[47] Mohammad Mehedi Hassan, M.Shamim Hossain, A.M.Jehad Sarkar,
and Eui-Nam Huh. Cooperative game-based distributed resource allo-
cation in horizontal dynamic cloud federation platform. Information
Systems Frontiers, pages 1–20, 2012.

[48] Mohammad Mehedi Hassan, Biao Song, and Eui nam Huh. Distributed
resource allocation games in horizontal dynamic cloud federation plat-
form. In Thulasiraman et al. [87], pages 822–827.

[49] Ting He, Shiyao Chen, Hyoil Kim, Lang Tong, and Kang-Won Lee.
Scheduling parallel tasks onto opportunistically available cloud re-
sources. In Chang [26], pages 180–187.

[50] IBM. IBM ILOG CPLEX Optimizer.
http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/.

[51] Tatsuro Ichiishi. Game Theory for Economic Analysis. New York:
Academic Press, 1983.

[52] Ganesh Neelakanta Iyer and Bharadwaj Veeravalli. On the resource
allocation and pricing strategies in compute clouds using bargaining
approaches. In Veeravalli and Foster [91], pages 147–152.

[53] JMeter Plugins. https://code.google.com/p/jmeter-plugins/.

[54] Kernel Based Virtual Machine. http://www.linux-kvm.org/.

[55] Kleopatra Konstanteli, Tommaso Cucinotta, Konstantinos Psychas,
and Theodora A. Varvarigou. Admission control for elastic cloud ser-
vices. In Chang [26], pages 41–48.

[56] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kan-
dasamy, and Guofei Jiang. Power and performance management of
virtualized computing environments via lookahead control. Cluster
Computing, 12(1):1–15, 2009.

[57] Yi-Kuei Lin and Ping-Chen Chang. Reliability evaluation of a com-
puter network in cloud computing environment subject to maintenance
budget. Applied Mathematics and Computation, 219(8):3893–3902,
2012.

[58] Ling Liu and Manish Parashar, editors. IEEE International Conference
on Cloud Computing, CLOUD 2011, Washington, DC, USA, 4-9 July,
2011. IEEE, 2011.

123

BIBLIOGRAPHY

[59] Tieming Liu, Chinnatat Methapatara, and Laura Wynter. Revenue
management model for on-demand it services. European Journal of
Operational Research, 207(1):401–408, 2010.

[60] Markov4JMeter. http://se.informatik.uni-kiel.de/markov4jmeter/.

[61] Michele Mazzucco and Dmytro Dyachuk. Optimizing cloud providers
revenues via energy efficient server allocation. Sustainable Computing:
Informatics and Systems, 2(1):1 – 12, 2012.

[62] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing.
Technical report, July 2009.

[63] Ishai Menache, Asuman Ozdaglar, and Nahum Shimkin. Socially op-
timal pricing of cloud computing resources. In Proceedings of the 5th
International ICST Conference on Performance Evaluation Method-
ologies and Tools, VALUETOOLS ’11, pages 322–331, ICST, Brus-
sels, Belgium, Belgium, 2011. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[64] Microsoft Corporation. http://www.microsoft.com/.

[65] Microsoft Corporation. Microsoft Office 365.
http://office365.microsoft.com/.

[66] Microsoft Corporation. Microsoft Windows Azure.
http://www.windowsazure.com/.

[67] Microsoft Corporation. Microsoft Windows Azure Virtual Machines.
http://www.windowsazure.com/en-us/home/features/virtual-
machines/.

[68] MODAClouds. http://www.modaclouds.eu/.

[69] Dov Monderer and Lloyd S. Shapley. Potential games. Games and
Economic Behavior, 14(1):124–143, May 1996.

[70] Jacqueline Morgan and Vincenzo Scalzo. Pseudocontinuous functions
and existence of nash equilibria. Journal of Mathematical Economics,
43(2):174 – 183, 2007.

[71] John Nash. Non-cooperative games. The Annals of Mathematics,
54(2):286–295, 1951.

124

BIBLIOGRAPHY

[72] Elisabetta Di Nitto and Ramin Yahyapour, editors. Towards a
Service-Based Internet - Third European Conference, ServiceWave
2010, Ghent, Belgium, December 13-15, 2010. Proceedings, volume
6481 of Lecture Notes in Computer Science. Springer, 2010.

[73] C.G.A.M. van den Nouweland, Peter Borm, W. van Golstein Brouwers,
R. Groot Bruinderink, and S.H. Tijs. A game theoretic approach to
problems in telecommunication. Open access publications from tilburg
university, Tilburg University, 1996.

[74] Onlive. http://www.onlive.com/.

[75] Rackspace Inc. http://www.rackspace.com/.

[76] N.S.V. Rao, S.W. Poole, Fei He, Jun Zhuang, C.Y.T. Ma, and D.K.Y.
Yau. Cloud computing infrastructure robustness: A game theory ap-
proach. In Computing, Networking and Communications (ICNC), 2012
International Conference on, pages 34 –38, 30 2012-feb. 2 2012.

[77] Philip J. Reny. On the existence of pure and mixed strategy nash equi-
libria in discontinuous games. Econometrica, 67(5):1029–1056, 1999.

[78] Salesforce Inc. http://www.force.com/.

[79] SAP. http://www.sap.com/.

[80] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity
provisioning system for the cloud. In Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, pages 559 –570, june
2011.

[81] Upendra Sharma, Prashant J. Shenoy, Sambit Sahu, and Anees Shaikh.
Kingfisher: Cost-aware elasticity in the cloud. In INFOCOM [2], pages
206–210.

[82] Socialbakers. Facebook statistics.
http://www.socialbakers.com/facebook-statistics/.

[83] Yang Song, Murtaza Zafer, and Kang-Won Lee. Optimal bidding in
spot instance market. In Greenberg and Sohraby [45], pages 190–198.

[84] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware con-
solidation for cloud computing. In Proceedings of the 2008 conference
on Power aware computing and systems, HotPower’08, pages 10–10,
Berkeley, CA, USA, 2008. USENIX Association.

125

BIBLIOGRAPHY

[85] Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P.
Ravindra, Elisa Bertino, and Ravi Kumar, editors. Proceedings of the
20th International Conference on World Wide Web, WWW 2011, Hy-
derabad, India, March 28 - April 1, 2011. ACM, 2011.

[86] Standard Performance Evaluation Corporation. SPECweb2005.
http://www.spec.org/web2005/.

[87] Parimala Thulasiraman, Laurence Tianruo Yang, Qiwen Pan, Xingang
Liu, Yaw-Chung Chen, Yo-Ping Huang, Lin-Huang Chang, Che-Lun
Hung, Che-Rung Lee, Justin Y. Shi, and Ying Zhang, editors. 13th
IEEE International Conference on High Performance Computing &
Communication, HPCC 2011, Banff, Alberta, Canada, September 2-4,
2011. IEEE, 2011.

[88] Fengguang Tian and Keke Chen. Towards optimal resource provision-
ing for running mapreduce programs in public clouds. In Liu and
Parashar [58], pages 155–162.

[89] Guoqiang Tian and Jianxin Zhou. Transfer continuities, generalizations
of the weierstrass and maximum theorems: A full characterization.
Journal of Mathematical Economics, 24(3):281 – 303, 1995.

[90] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lind-
ner. A break in the clouds: towards a cloud definition. SIGCOMM
Comput. Commun. Rev., 39(1):50–55, December 2008.

[91] Bharadwaj Veeravalli and Ian T. Foster, editors. Proceedings of the 17th
IEEE International Conference on Networks, ICON 2011, Singapore,
December 14-16, 2011. IEEE, 2011.

[92] VMware Inc. http://www.vmware.com/.

[93] Mark Voorneveld. Equilibria and approximate equilibria in infinite
potential games. Economics Letters, 56(2):163 – 169, 1997.

[94] Jian Wan, Dechuan Deng, and Congfeng Jiang. Non-cooperative gam-
ing and bidding model based resource allocation in virtual machine
environment. In IPDPS Workshops [4], pages 2183–2188.

[95] Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He, Zhengping
Qian, and Lidong Zhou. Distributed systems meet economics: pricing
in the cloud. In Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing, HotCloud’10, pages 6–6, Berkeley, CA, USA,
2010. USENIX Association.

126

BIBLIOGRAPHY

[96] J Wardrop. Some theoretical aspects of road traffic research. Pro-
ceedings of the Institution of Civil Engineers, Part II, 1(36):352–362,
1952.

[97] Guiyi Wei, Athanasios V. Vasilakos, Yao Zheng, and Naixue Xiong. A
game-theoretic method of fair resource allocation for cloud computing
services. The Journal of Supercomputing, 54(2):252–269, 2010.

[98] Andreas Wolke and Gerhard Meixner. Twospot: A cloud platform for
scaling out web applications dynamically. In Nitto and Yahyapour [72],
pages 13–24.

[99] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. Sla-based ad-
mission control for a software-as-a-service provider in cloud computing
environments. J. Comput. Syst. Sci., 78(5):1280–1299, 2012.

[100] Xen. Xen Hypervisor. http://www.xen.org/.

[101] Z. Xiao, Q. Chen, and H. Luo. Automatic scaling of internet applica-
tions for cloud computing services. Computers, IEEE Transactions on,
PP(99):1, 2012.

[102] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allocation using
virtual machines for cloud computing environment. Parallel and Dis-
tributed Systems, IEEE Transactions on, PP(99):1, 2012.

[103] PengCheng Xiong, Zhikui Wang, Simon Malkowski, Qingyang Wang,
Deepal Jayasinghe, and Calton Pu. Economical and robust provisioning
of n-tier cloud workloads: A multi-level control approach. In ICDCS
[1], pages 571–580.

[104] Murtaza Zafer, Yang Song, and Kang-Won Lee. Optimal bids for spot
vms in a cloud for deadline constrained jobs. In Chang [26], pages
75–82.

[105] Sharrukh Zaman and Daniel Grosu. An online mechanism for dynamic
vm provisioning and allocation in clouds. In Chang [26], pages 253–260.

[106] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-
the-art and research challenges. J. Internet Services and Applications,
1(1):7–18, 2010.

[107] Qi Zhang, Quanyan Zhu, Mohamed Faten Zhani, and Raouf Boutaba.
Dynamic service placement in geographically distributed clouds. In
ICDCS [3], pages 526–535.

127

BIBLIOGRAPHY

[108] Xiaoyun Zhu, Donald Young, Brian J. Watson, Zhikui Wang, Jerry
Rolia, Sharad Singhal, Bret McKee, Chris Hyser, Daniel Gmach, Rob
Gardner, Tom Christian, and Ludmila Cherkasova. 1000 islands: an in-
tegrated approach to resource management for virtualized data centers.
Cluster Computing, 12(1):45–57, 2009.

128

	Introduction
	State of the art
	Cloud Computing basic concepts
	Cloud Computing definition
	Characteristics
	Structure models

	Cloud Computing and run-time research challenges
	Problem
	Solution
	Discipline
	State of the art
	Classification of the state of the art
	Criteria for evaluation

	A game theory service provisioning model
	Problem statement and assumptions
	Generalized Nash game model
	Game analysis
	Dominant strategies for IaaSs
	Game potential
	Analysis of constraints
	Game model reformulation

	A distributed algorithm for identifying Generalized Nash Equilibria

	Tools
	AMPL
	CPLEX
	CPLEX algorithms for continuos optimization

	SPECweb 2005
	JMeter
	SPECweb deployment in the Cloud
	SPECweb tests
	JMeter extension
	SPECmeter

	Cloud analysis tool
	Cloud analysis tool class diagram
	Cloud analysis tool sequence diagram

	Experimental results
	Design of experiments
	Parameters generation
	SaaS to IaaS mapping
	Traffic generation

	Scalability analysis
	Equilibria efficiency
	Social optimum problem
	Price of Anarchy and Individual Worst Case

	Alternative algorithms for resource allocation
	Heuristic
	Resource rescaling algorithm

	Algorithms efficiency comparison
	Multiple IaaS analysis

	Conclusions
	Appendices
	Game theory and generalized Nash equilibrium problem
	Game theory in the Cloud Computing
	Definition of Game
	Solution concepts: Nash Equilibrium and Generalized Nash Equilibrium
	Equilibria existence and potential games
	Wardrop equilibrium

